The EACVI Textbook of Echocardiography

Echocardiography uses ultrasound waves to generate images of cardiovascular structures and to display information regarding the blood flow through these structures. Knowledge of basic ultrasound principles and current technology is essential for image interpretation and for optimal use of equipment during image acquisition and post-processing. This fully updated second edition of the official textbook of the European Association of Cardiovascular Imaging (EACVI) serves the educational requirements of cardiologists and all clinical medical professionals, underpinning the structural training in accordance with the EACVI goals and reflecting the core European syllabus throughout.

Author(s):  
Madalina Garbi ◽  
Jan D’hooge ◽  
Evgeny Shkolnik

Echocardiography uses ultrasound waves to generate images of cardiovascular structures and to display information regarding the blood flow through these structures. Knowledge of basic ultrasound principles and current technology is essential for image interpretation and for optimal use of equipment during image acquisition and post-processing. This chapter starts by presenting the physics of ultrasound and the construction and function of instruments. Image formation, optimization, display, presentation, storage, and communication are explained. Advantages and disadvantages of available imaging modes (M-mode, two-dimensional, and three-dimensional) are detailed and imaging artefacts are illustrated. The potential biologic effects of ultrasound and the need for quality assurance are discussed.


Author(s):  
Madalina Garbi

Knowledge of basic ultrasound principles and current echocardiography technology features is essential for image interpretation and for optimal use of equipment during image acquisition and post-processing.Echocardiography uses ultrasound waves to generate images of cardiovascular structures and to display information regarding the blood flow through these structures.The present chapter starts by presenting the physics of ultrasound and the construction and function of instruments. Image formation, optimization, display, presentation, storage, and communication are explained. Advantages and disadvantages of available imaging modes (M-mode, 2D, 3D) are detailed and imaging artefacts are illustrated. The biological effects of ultrasound and the need for quality assurance are discussed.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Vol 1094 (1) ◽  
pp. 012120
Author(s):  
Hussein Togun ◽  
Ali Abdul Hussain ◽  
Saja Ahmed ◽  
Iman Abdul hussain ◽  
Huda Shaker

Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110316
Author(s):  
Salman Akhtar ◽  
Luthais B McCash ◽  
Sohail Nadeem ◽  
Salman Saleem ◽  
Alibek Issakhov

The electro-osmotically modulated hemodynamic across an artery with multiple stenosis is mathematically evaluated. The non-Newtonian behaviour of blood flow is tackled by utilizing Casson fluid model for this flow problem. The blood flow is confined in such arteries due to the presence of stenosis and this theoretical analysis provides the electro-osmotic effects for blood flow through such arteries. The mathematical equations that govern this flow problem are converted into their dimensionless form by using appropriate transformations and then exact mathematical computations are performed by utilizing Mathematica software. The range of the considered parameters is given as [Formula: see text]. The graphical results involve combine study of symmetric and non-symmetric structure for multiple stenosis. Joule heating effects are also incorporated in energy equation together with viscous effects. Streamlines are plotted for electro-kinetic parameter [Formula: see text] and flow rate [Formula: see text]. The trapping declines in size with incrementing [Formula: see text], for symmetric shape of stenosis. But the size of trapping increases for the non-symmetric case.


Sign in / Sign up

Export Citation Format

Share Document