Assessment of biological maturation

Author(s):  
Robert M Malina

The processes of growth and maturation occur concurrently and are related. Chapter 1 discusses indicators of growth status and rate followed by a description of methods for assessment of maturity status and timing. Status refers to the state of maturation at the time of observation. Skeletal age and stages of puberty indicate status. Timing refers to the chronological age at which specific maturational events occur. Ages at peak height velocity (PHV) and at menarche are used most often. Skeletal age is applicable from childhood through adolescence; other indicators of status and timing are limited to the interval of puberty and the growth spurt. Increasingly used non-invasive indicators of maturation include percentage of predicted adult height attained at the time of observation (status) and predicted maturity offset or time before age at PHV (timing). Both have limitations and require further validation.

2020 ◽  
Vol 33 (12) ◽  
pp. 1589-1595
Author(s):  
Mariana del Pino ◽  
Virginia Fano ◽  
Paula Adamo

AbstractObjectivesIn general population, there are three phases in the human growth curve: infancy, childhood and puberty, with different main factors involved in their regulation and mathematical models to fit them. Achondroplasia children experience a fast decreasing growth during infancy and an “adolescent growth spurt”; however, there are no longitudinal studies that cover the analysis of the whole post-natal growth. Here we analyse the whole growth curve from infancy to adulthood applying the JPA-2 mathematical model.MethodsTwenty-seven patients, 17 girls and 10 boys with achondroplasia, who reached adult size, were included. Height growth data was collected from birth until adulthood. Individual growth curves were estimated by fitting the JPA-2 model to each individual’s height for age data.ResultsHeight growth velocity curves show that after a period of fast decreasing growth velocity since birth, with a mean of 9.7 cm/year at 1 year old, the growth velocity is stable in late preschool years, with a mean of 4.2 cm/year. In boys, age and peak height velocity in puberty were 13.75 years and 5.08 cm/year and reach a mean adult height of 130.52 cm. In girls, the age and peak height velocity in puberty were 11.1 years and 4.32 cm/year and reach a mean adult height of 119.2 cm.ConclusionsThe study of individual growth curves in achondroplasia children by the JPA-2 model shows the three periods, infancy, childhood and puberty, with a similar shape but lesser in magnitude than general population.


2018 ◽  
Vol 6 (12) ◽  
pp. 232596711881104 ◽  
Author(s):  
Hans Jan Bult ◽  
Maarten Barendrecht ◽  
Igor Joeri Ramon Tak

Background: The relationship between injury risk (IR) in age groups and periods around peak height velocity (PHV) remains unclear. PHV is defined as the moment of the largest increase in body height. Purpose: To investigate injury risk and injury burden as functions of growth velocity (periods around PHV) and chronological age groupings (under 12 years [U12] to U19) in talented youth male soccer players. Study Design: Cohort study; Level of evidence, 2. Methods: A total of 170 players from the youth academy of a Dutch soccer club (highest professional league: Eredivisie) were observed for 1 to 3 seasons. Injuries, exposure, PHV age, and chronological age were registered. The injury incidence density (IID) and injury burden per 1000 hours of soccer participation, with 95% CIs, were calculated for 5 PHV periods and 7 age groups. These were compared with the overall cohort results using incidence ratios (IRs) and burden ratios (BRs) with 95% CIs. Results: The mean age at PHV was 14.4 ± 0.65 years (range, 12.8-16.5 years). The mean IID for the total cohort was 8.34 injuries per 1000 hours (95% CI, 7.71-9.02). Compared with the overall mean, a significantly higher IID was found for PHV period 4+5 (IR, 1.31 [95% CI, 1.00-1.71]; P = .049) and for the U15 group (IR, 1.49 [95% CI, 1.24-1.79]; P < .001). The overall injury burden was 58.37 injury days per 1000 hours (95% CI, 56.66-60.13). In PHV period 4+5, the injury burden was significantly higher (BR, 1.53 [95% CI, 1.39-1.68]; P < .001) when compared with the overall mean. Also, compared with the overall mean, the injury burden was higher in the U16 (BR, 1.48 [95% CI, 1.39-1.58]; P < .001), U15 (BR, 1.28 [95% CI, 1.19-1.38]; P < .001), and U17 groups (BR, 1.21 [95% CI, 1.13-1.31]; P < .001). Conclusion: Talented young soccer players were more prone to injuries during the 6 months after PHV (31% above overall mean) as well as in the U15 group (49% above overall mean). Based on the higher injury burden in the U16 (48%), U15 (28%), and U17 (21%) groups, we suggest that research on injury risk factors and preventive measures should primarily target these age groups. Additional interventions based on PHV may be of limited value from a screening perspective. Further research is needed on the interaction between age groups and PHV periods.


PEDIATRICS ◽  
1998 ◽  
Vol 102 (Supplement_3) ◽  
pp. 507-511 ◽  
Author(s):  
Val Abbassi

We reviewed the growth characteristics of American boys and girls from published studies, including age at takeoff, age at peak height velocity, peak height velocity, duration of puberty, and the magnitude of the pubertal contribution to adult height. Age at takeoff is highly variable and sex-dependent. The mean takeoff age in children growing at an average rate is ∼11 years in boys and 9 years in girls, and peak height velocity occurs at a mean age of 13.5 years and 11.5 years, respectively, in these children. Whole-year peak height velocity is 9.5 cm/y in boys and 8.3 cm/y in girls, with slight variations in the different studies. The contribution of pubertal growth to final height is ∼30 to 31 cm in boys, accounting for 17% to 18% of the final height, and 27.5 to 29 cm in girls, accounting for 17% of the final height. The magnitude of pubertal growth has a negative correlation with age at takeoff, but no correlation with final height. Age at takeoff, however, correlates highly with pubertal stage, but correlates negatively with duration of puberty.


2009 ◽  
Vol 6 (5) ◽  
pp. 597-605 ◽  
Author(s):  
Eric E. Wickel ◽  
Joey C. Eisenmann ◽  
Gregory J. Welk

Background:This study compared physical activity levels among early, average, and late maturing boys and girls.Methods:Physical activity was assessed with an Actigraph accelerometer in 161 (76 boys, 85 girls) 9 to 14 year olds over 7 consecutive days. Anthropometric variables were measured and the maturity offset (ie, years from peak height velocity) was predicted. Biological maturity groups (early, average, and late) were created based on the mean estimated age at peak height velocity for boys and girls separately.Results:Levels of moderate-to-vigorous physical activity (MVPA) were similar between early, average, and late maturing boys and girls after adjusting for differences in chronological age. Levels of MVPA progressively declined across chronological age in boys and girls (P < .001) and gender differences existed at 10-, 12-, and 13-years, with boys having higher levels than girls (P < .05). When aligned according to biological age, gender-related differences in MVPA did not exist.Conclusions:Within this sample of 9 to 14 year old boys and girls, there were no significant differences in MVPA among early, average, and late maturing individuals.


2019 ◽  
Author(s):  
Linda M O’Keeffe ◽  
Monika Frysz ◽  
Joshua A. Bell ◽  
Laura D. Howe ◽  
Abigail Fraser

AbstractObjectiveTo better understand if earlier puberty is more likely a result of adiposity gain in childhood than a cause of adiposity gain in adulthood.DesignProspective birth cohort study.SettingPopulation based study of children born in 1991/1992 in Bristol UK (Avon Longitudinal Study of Parents and Children (ALSPAC)).Participants4,186 participants (2,176 female and 1,990 male) of predominantly White ethnicity with 18,232 repeated measures throughout follow-up.Exposures & outcomesRepeated measures of height from 5y to 20y to identify puberty timing (age at peak height velocity) and repeated measures of dual-energy X-ray absorptiometry-derived fat mass from age 9y to 18y, modelled separately in females and males using models based on chronological age and time before and after puberty onset.ResultsMean age at peak height velocity was 11.7y (standard deviation (SD)=0.8y) for females and 13.6y (SD=0.9y) for males. In adjusted models of fat mass by chronological age, a one-year later age at peak height velocity was associated with 20.4% (95% Confidence Interval (CI): 18.5% to 22.3%) and 22.8% (95% (CI): 20.7% to 24.8%) lower fat mass in females and males respectively at 9y. These differences were smaller at age 18y: 7.8% (95% (CI):5.9% to 9.6%) and 11.9% (95% (CI): 9.1%, to 14.7%) lower fat mass in females and males respectively per year later age at peak height velocity. Trajectories of fat mass by time before and after puberty onset provided strong evidence for an association of pre-pubertal fat mass with puberty timing, and little evidence of an association of puberty timing with post-pubertal changes in fat mass in females. In males, findings were less clear before puberty though there was some evidence for an association of earlier puberty timing with great post-pubertal gain in fat mass.ConclusionsEarlier puberty is more likely a result of adiposity gain in childhood than a cause of adiposity gain in adulthood in females. In males early to puberty, differences in fat mass after puberty are driven partially by tracking of adiposity from early childhood but also greater gains in post-pubertal adiposity. Reducing levels of childhood adiposity may help prevent both earlier puberty, later life adiposity and their associated adverse social, mental and physical health sequelae.


Sports ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 152
Author(s):  
Toshiharu Tsutsui ◽  
Toshihiro Maemichi ◽  
Satoshi Iizuka ◽  
Suguru Torii

It is important to understand the timing of the maximum increase of forearm-hand inertia value and lean body mass (LBM) of the shoulder girdle musculature when elbow injury frequently occurs. This study aimed to clarify the discrepancies of those in youth baseball players. Forty-three male baseball players (8- to 14-years-old) participated in this study. The forearm-hand inertia value and LBM of the shoulder girdle musculature were calculated using dual-energy X-ray absorptiometry (DXA). A cubic spline fit was applied to the annual increase forearm-hand inertia value and LBM of the shoulder girdle musculature for each chronological age and years from peak height velocity (PHV) age. As a result of cubic splines fitting, the peak timing for forearm-hand inertia value and LBM of the shoulder girdle musculature was 12.42 and 12.75 years in chronological age, −0.66 and −0.11 years in PHV age. Therefore, the peak timing of forearm-hand inertia value was about 4 months earlier in chronological age and half a year earlier in PHV age than LBM of the shoulder girdle musculature. Acquiring sufficient shoulder girdle musculature during the period when the growth of the shoulder girdle musculature cannot catch up with forearm-hand inertial value is necessary to reduce the elbow load while throwing.


2005 ◽  
Vol 99 (4) ◽  
pp. 1317-1326 ◽  
Author(s):  
Maarten W. Peeters ◽  
Martine A. Thomis ◽  
Hermine H. M. Maes ◽  
Gaston P. Beunen ◽  
Ruth J. F. Loos ◽  
...  

The purpose of this study was to determine whether the observed phenotypic stability in static strength during adolescence, as measured by interage correlations in arm pull, is mainly caused by genetic and/or environmental factors. Subjects were from the Leuven Longitudinal Twin Study ( n = 105 pairs, equally divided over 5 zygosity groups). Arm-pull data were aligned on age at peak height velocity to attenuate the temporal fluctuations in interage correlations caused by differences in timing of the adolescent growth spurt. Developmental genetic models were fitted using structural equation modeling. After the data were aligned on age at peak height velocity, the annual interage correlations conformed to a quasi-simplex structure over a 4-yr interval. The best-fitting models included additive genetic and unique environmental sources of variation. Additive genetic factors that already explained a significant amount of variation at previous measurement occasions explained 44.3 and 22.5% of the total variation at the last measurement occasion in boys and girls, respectively. Corresponding values for unique environmental sources of variance are 31.2 and 44.5%, respectively. In conclusion, the observed stability of static strength during adolescence is caused by both stable genetic influences and stable unique environmental influences in boys and girls. Additive genetic factors seem to be the most important source of stability in boys, whereas unique environmental factors appear to be more predominant in girls.


Author(s):  
Robert M. Malina ◽  
Diogo V. Martinho ◽  
João Valente-dos-Santos ◽  
Manuel J. Coelho-e-Silva ◽  
Sławomir M. Kozieł

Reported mean ages, heights and weights of female soccer players aged <19 years in 161 studies spanning the years 1992–2020 were extracted from the literature or calculated from data available to the authors; 35 studies spanning the years 1981–2020 also included an indicator of biological maturation. Heights and weights were plotted relative to U.S. reference data. Preece–Baines Model 1 was fitted to moving averages to estimate ages at peak velocity. Maturity indicators included skeletal age, pubertal status, age at menarche, percentage of predicted adult height and predicted maturity offset. Heights and weights showed negligible secular variation across the time interval. Heights were slightly above or approximated the reference medians through 14 years old and then varied between the medians and 75th percentiles through 18 years old. Weights were above the reference medians from 9 to 18 years old. Mean ages at menarche ranged from 12.7 to 13.0 years. The trend in heights and weights suggested the persistence and/or selection of taller and heavier players during adolescence, while estimated age at peak height velocity (PHV) and ages at menarche were within the range of mean ages in European and North American samples. Data for skeletal and sexual maturity status were limited; predicted maturity offset increased linearly with mean ages and heights at prediction.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sérgio Antunes Ramos ◽  
Luis Miguel Massuça ◽  
Anna Volossovitch ◽  
António Paulo Ferreira ◽  
Isabel Fragoso

The aims of the present study were: (i) to describe the structural and functional attributes of young male Portuguese basketball players aged 12–16 years and (ii) to generate normative data according to chronological age and years from peak height velocity. A total of 281 male Portuguese young basketball players between the ages of 12 and 16 years were assessed in this study. Chronological age, maturity parameters (maturity offset and predicted age at peak height velocity), morphological (body mass, height, and skinfolds and length), and fitness (sprint, change of direction ability, jump, and upper body strength) attributes were measured. Descriptive statistics were determined for the age and maturity status, and the 10th, 25th, 50th, 75th, and 90th percentiles were chosen as reference values. Descriptive and normative values of the players' morphological and fitness attributes, stratified by age and maturity status, are provided. The normative values of age at peak height velocity (category YAPHV = 0) showed that regional basketball players presented average values (50th percentile) of 169.8 cm for height, 173.3 cm for arm span, 55.6 kg for body mass, 3.34 s for the 20-m speed test, 10.31 s for the T-test, 4.75 m for the 2-kg medicine ball throw, 66.9 kg for the combined right and left handgrip strength, and 30.1 and 35.9 cm for jump height in the countermovement jump (CMJ) and CMJ with arm swing, respectively. In conclusion, these results may be helpful to quantify and control an athlete's performance over time and to adjust strength and conditioning programs to biological demands.


2019 ◽  
Vol 8 (1) ◽  
pp. 38-48
Author(s):  
Amanda Batista ◽  
Rui Garganta ◽  
Lurdes Ávila-Carvalho

The aims of the present study were: (1) identify and compare the biological maturity in Portuguese gymnasts across competitive levels; (2) investigate how morphological variables and training volume behave in the different status and indicators of maturity and (3) determinate if the maturity status influences the competitive performance. The sample (n=164) consisted of three competition levels (Base, 1st division and Elite) from Portugal. Anthropometric measurements and body composition were performed. For analysis of biological maturation, the sexual and somatic maturation were evaluated. For the statistical analysis, Mann-Whitney and Kruskal-Wallis tests, Pearson correlation and Linear Regression were used. In total, 63.4% of gymnasts had not yet reached menarche and the higher competition level, lower the number of gymnasts with menarche. On mean, all groups had reached the age at peak height velocity. The higher the competition level, higher the chronological age and age at peak height velocity. Thus, the maturation indicators showed a delay in pubertal development in all competition levels and the elite gymnasts seem present a later pubertal development. The chronological age, the values of body mass, height, BMI and body fat increased with the maturity status according all maturity indicators. However, gymnasts with different maturity status revealed similar training volume. Finally, the maturational status explained 11.5% of competition success with higher advantage in the competitive performance to prepubertal gymnasts. Thus, the premenarcheal status and a higher age at peak height velocity contribute to performance in Rhythmic Gymnastics.


Sign in / Sign up

Export Citation Format

Share Document