Essential Variables and Breath Types

Author(s):  
Yuan Lei

‘Essential Variables and Breath Types’ describes the eight types of mechanical breath in terms of their five essential variables: triggering, cycling, controlling, targeting, and baseline pressure. This chapter begins with detailed descriptions of these variables, including their definitions, mechanisms, and options. It ends by defining the eight mechanical breath types as different combinations of these variables. The author describes how these variables are used to define such breath types as volume control or pressure support. The author incorporates into the discussion abnormalities of each of these variables.

2019 ◽  
Vol 32 (7-8) ◽  
pp. 520 ◽  
Author(s):  
Maria Teresa Dionisio ◽  
Armanda Rebelo ◽  
Carla Pinto ◽  
Leonor Carvalho ◽  
José Farela Neves

Introduction: Invasive mechanical ventilation contributes to ventilator-induced diaphragmatic dysfunction, delaying extubation and increasing mortality in adults. Despite the possibility of having a higher impact in paediatrics, this dysfunction is not routinely monitored. Diaphragm ultrasound has been proposed as a safe and non-invasive technique for this purpose. The aim of this study was to describe the evolution of diaphragmatic morphology and functional measurements by ultrasound in ventilated children.Material and Methods: Prospective exploratory study. Children admitted to Paediatric Intensive Care Unit requiring mechanical ventilation > 48 hours were included. The diaphragmatic thickness, excursion and the thickening fraction were assessed by ultrasound.Results: Seventeen cases were included, with a median age of 42 months. Ten were male, seven had comorbidities and three in seventeen had malnutrition at admission. The median time under mechanical ventilation was seven days. The median of the initial and minimum diaphragmatic thickness was 2.3 mm and 1.9 mm, respectively, with a median decrease in thickness of 13% under pressure-regulated volume control. Diaphragmatic atrophy was observed in 14/17 cases. Differences in the median thickness variation were found between patients with sepsis and without (0.70 vs 0.25 mm; p = 0.019). During pressure support ventilation there was a tendency to increase diaphragmatic thickness and excursion. Extubation failure occurred for diaphragmatic thickening fraction ≤ 35%.Discussion: Under pressure-regulated volume control there was a tendency for a decrease in diaphragmatic thickness. In the pre-extubation stage under pressure support, there was a tendency for it to increase. These results suggest that, by titrating ventilation using physiological levels of inspiratory effort, we can reduce the diaphragmatic morphological changes associated with ventilation.Conclusion: The early recognition of diaphragmatic changes may encourage a targeted approach, namely titration of ventilation, in order to reduce ventilator-induced diaphragmatic dysfunction and its clinical repercussions.


2020 ◽  
Author(s):  
Matthieu Koszutski ◽  
Benjamin Pequignot ◽  
Antoine Kimmoun ◽  
Thomas Remen ◽  
Philippe Guerci ◽  
...  

Abstract Background:To evaluate the switching of patients mechanically ventilated on Pressure Support or Volume Control to inverse-ratio Airway Pressure Release Ventilation (APRV) during the COVID-19 pandemic.Methods:We performed a single-center retrospective observational analysis in two ICUs in a tertiary referral university teaching hospital in France. Were included patients with Covid-19 pneumonia requiring invasive ventilation with a PaO2:FiO2 ratio lower than 200 mmHg who performed a 6-hour trial of inverse-ratio APRV.Results:Seventeen consecutive patients who completed a 6-hour APRV trial in April 2020 were included. Three patients who were unable to be maintained on APRV due to an immediate fall in SpO2 were not included. In 12/17 patients (71%), the increase in PaO2:FiO2 ratio was greater than 20%. Mean (± standard deviation) PaO2:FiO2 ratio increased from 126 (± 28) mmHg to 178 (± 53) mmHg after 6 hours of APRV (p<0.001). Two patients presented a decrease in PaO2:FiO2 ratio after 6 hours of APRV. There was no appearance of significant hemodynamic impairment during APRV and an eventual increase in PaCO2 during the first hour of APRV was managed by increasing the respiratory rate (i.e. shortening T-high) and/or increasing tidal volume (i.e. increasing T-low).Conclusions:Switching from Conventional Ventilation (Pressure Support or Volume Assist Control) to inverse-ratio APRV for a 6-hour period in two ICUs that were not previously familiar with this ventilation technique was well tolerated, and associated with a marked improvement in oxygenation. Further studies evaluating inverse-ratio APRV in acute respiratory failure are warranted.Trial registration:NCT04386369


2008 ◽  
Vol 19 (4) ◽  
pp. 399-411
Author(s):  
Suzanne M. Burns

Numerous pressure modes are currently available on ventilators. The application of microprocessor technology has resulted in sophisticated mode options that are very responsive to patient-initiated efforts, yet little is known about how to use the modes or their effect on patient outcomes. This article describes a wide variety of pressure modes including traditional modes such as pressure support and pressure-controlled ventilation in addition to less traditional new modes such as airway pressure release ventilation, biphasic positive airway pressure, Pressure Augmentation (Bear 1000, Viasys Healthcare, Yorba Linda, California), Volume Support (Maquet, Bridgewater, New Jersey), Pressure Regulated Volume Control (Maquet, Bridgewater, New Jersey), Volume Ventilation Plus (Puritan Bennett, Boulder, Colorado), Adaptive Support Ventilation (Hamilton Medical, Switzerland), and Proportional Assist Ventilation (Dräger Medical, Richmond Hill, Ontario, Canada). The “good, the bad, and the ugly” issues surrounding the application, evaluation, and outcomes of the modes are discussed.


Author(s):  
John W. Kreit

Ventilator Modes and Breath Types describes, compares, and contrasts the different modes and breath types that are available on intensive care unit ventilators. The chapter first covers the various ventilator modes: continuous mandatory ventilation, synchronized intermittent mandatory ventilation, spontaneous ventilation, and bi-level ventilation. Then it turns to a discussion of the various mechanical breath types: volume control, pressure control, adaptive pressure control, pressure support, and finally, adaptive pressure support. It also provides practical advice about how and when to use each mode–breath type combination. Eight Boxes in the chapter discuss each breath type, and list each type’s features, and its clinician-set parameters.


Author(s):  
D. M. Surkov

Респіраторна підтримка вважається одним з головних компонентів інтенсивної терапії доношених новонароджених з помірною або тяжкою гіпоксично-ішемічною енцефалопатією (ГІЕ). Більшість авторів рекомендують проведення штучної вентиляції легень протягом періоду лікувальної гіпотермії та раннього періоду після зігрівання. Традиційно в новонароджених застосовується вентиляція з контролем тиску в дихальних шляхах, недоліком якої є можливі значні коливання рівня СО2, що впливає на церебральну перфузію. Альтернативою може бути новітній режим вентиляції Neurally Adjusted Ventilatory Assist (NAVA). Існує певна кількість досліджень застосування режиму NAVA в немовлят, як доношених, так і недоношених, але його вплив на церебральну перфузію порівняно з традиційними режимами не вивчений. Мета роботи. Порівняти вплив NAVA та інших режимів штучної вентиляції легень на стан мозкового кровотоку в гострому періоді ГІЕ в доношених новонароджених. Матеріали і методи. Досліджено 205 доношених новонароджених з ГІЕ за шкалою Sarnat II–III ст. у терміні ≤ 72 годин після пологів. Немовлята були розподілені методом простої відкритої рандомізації за режимами штучної вентиляції легень на групу NAVA (n = 18) та групу контролю (n = 187), яку в подальшому було стратифіковано на підгрупи із застосуванням режимів Pressure Control (РС) (n = 152), Synchronized Intermittent Mandatory Ventilation / Pressure Support Ventilation (SIMV/PSV) (n = 16) та Pressure Regulated Volume Control (PRVC) (n = 19). Проведений порівняльний аналіз впливу NAVA та інших режимів вентиляції на стан церебральної перфузії в гострому періоді неонатальної ГІЕ. Результати та обговорення. Порівняно з традиційними режимами вентиляції PC, SIMV/PSV та PRVC на фоні респіраторної підтримки в режимі NAVA отримані достовірно кращі показники доплерівських індексів мозкового кровотоку RI (0,66 [0,58–0,72] проти 0,70 [0,67–0,74], р = 0,021) та РІ (1,2 [1,0–1,40] проти 1,3 [1,2–1,5], р = 0,032) на 3-й день дослідження, наприкінці періоду лікувальної гіпотермії та початку зігрівання. Проведений у подальшому мультиваріантний дисперсійний аналіз ANOVA (analysis of variance) підтвердив позитивний вплив режиму NAVA на церебральну перфузію (р = 0,009), але не виявив достовірного зв’язку з індексами мозкового кровотоку при застосуванні режимів PC (р = 0,140), SIMV/PSV (р = 0,446) та PRVC (р = 0,601). Висновки. Режим вентиляції NAVA має кращий вплив на індекси церебральної перфузії в доношених новонароджених у гострому періоді ГІЕ порівняно з традиційними режимами PC, SIMV/PSV та PRVC.


CHEST Journal ◽  
2006 ◽  
Vol 130 (4) ◽  
pp. 210S ◽  
Author(s):  
Smith Jean ◽  
Ismail Cinel ◽  
Susmita Rajanala ◽  
Christina Tay ◽  
Paige Durflinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document