Streptococci and enterococci

Author(s):  
Dennis L. Stevens

The streptococci are a diverse group of Gram-positive pathogenic cocci that cause clinical disease in humans and domestic animals. They are traditionally classified on the basis of serological reactions, particularly Lancefield grouping based on cell-wall carbohydrates, and haemolytic activity on blood agar. Six groups can be defined by genetic analysis: pyogenic streptococci, milleri or anginosus group, mitis group, salivarius group, mutans group, and bovis group....

2020 ◽  
pp. 965-975
Author(s):  
Dennis L. Stevens ◽  
Sarah Hobdey

The term streptococcus was first used by Billroth in 1874 to describe chain-forming cocci found in infected wounds. The streptococci are a diverse group of Gram-positive pathogenic cocci that cause clinical disease in humans and domestic animals. They are traditionally classified on the basis of serological reactions, particularly Lancefield grouping based on cell-wall carbohydrates, and haemolytic activity on blood agar. Six groups can be defined by genetic analysis: pyogenic streptococci, milleri or anginosus group, mitis group, salivarius group, mutans group, and bovis group. Since the medically important members of the mitis, salivarius, and mutans groups are all oral streptococci and are of clinical relevance predominantly in endocarditis, they will be considered together in this chapter.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


2004 ◽  
Vol 23 (6) ◽  
pp. 627-630 ◽  
Author(s):  
Mercedes Berlanga ◽  
M.Teresa Montero ◽  
Jordi Hernández-Borrell ◽  
Miquel Viñas

2014 ◽  
Vol 70 (a1) ◽  
pp. C432-C432
Author(s):  
George Minasov ◽  
Salvatore Nocadello ◽  
Ekaterina Filippova ◽  
Andrei Halavaty ◽  
Wayne Anderson

The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically important proteins from human pathogens. It also provides the infectious disease community with a high throughput pipeline for structure determination that carries out all steps of the process, from target selection through structure deposition. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. The CSGID has deposited over 680 structures in the Protein Data Bank. The proteins that are exposed on the surface of Gram positive bacterial pathogens (including Staphylococcus aureus, Bacillus anthracis, Listeria monocytogenes, Streptococcus species and Clostridium species) have been one focus area for the CSGID. So far, the structures of more than 55 of these proteins have been determined. The surface proteins are important in the interactions between the pathogen and its host, but many of them are as yet functionally uncharacterized. Among the examples that will be presented is the Bacillus anthracis SpoIID protein. SpoIID is part of a coordinated cell wall degradation machine that is essential for sporulation and the morphological changes involved. It represents a new family of lytic transglycosylases that degrade the glycan strands of the peptidoglycan cell wall. The two active site clefts in the dimeric enzyme include residues from both subunits, suggesting that the dimer is required for activity. This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C.


1971 ◽  
Vol 246 (6) ◽  
pp. 1820-1827 ◽  
Author(s):  
John Mauck ◽  
Lawrence Chan ◽  
Luis Glaser

Sign in / Sign up

Export Citation Format

Share Document