scholarly journals A measurement of the Hubble constant from Type II supernovae

2020 ◽  
Vol 496 (3) ◽  
pp. 3402-3411 ◽  
Author(s):  
T de Jaeger ◽  
B E Stahl ◽  
W Zheng ◽  
A V Filippenko ◽  
A G Riess ◽  
...  

ABSTRACT Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of ∼4.4σ with the current value inferred from Planck satellite measurements of the cosmic microwave background radiation and the standard $\Lambda $cold dark matter (ΛCDM) cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using seven SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s−1 Mpc−1 (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s−1 Mpc−1 from the Planck + ΛCDM value. Adding an estimate of the systematic errors (2.8 km s−1 Mpc−1) changes the ∼1.7σ discrepancy with Planck +ΛCDM to ∼1.4σ. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H0 value exceeds the value from the early Universe with a confidence level of 95 per cent. As in this work, we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H0 tension.

2021 ◽  
Vol 647 ◽  
pp. A72 ◽  
Author(s):  
Nandita Khetan ◽  
Luca Izzo ◽  
Marica Branchesi ◽  
Radosław Wojtak ◽  
Michele Cantiello ◽  
...  

We present a new calibration of the peak absolute magnitude of Type Ia supernovae (SNe Ia) based on the surface brightness fluctuations (SBF) method, aimed at measuring the value of the Hubble constant. We build a sample of calibrating anchors consisting of 24 SNe hosted in galaxies that have SBF distance measurements. Applying a hierarchical Bayesian approach, we calibrate the SN Ia peak luminosity and extend the Hubble diagram into the Hubble flow by using a sample of 96 SNe Ia in the redshift range 0.02 < z < 0.075, which was extracted from the Combined Pantheon Sample. We estimate a value of H0 = 70.50 ± 2.37 (stat.) ± 3.38 (sys.) km s−1 Mpc−1 (i.e., 3.4% stat., 4.8% sys.), which is in agreement with the value obtained using the tip of the red giant branch calibration. It is also consistent, within errors, with the value obtained from SNe Ia calibrated with Cepheids or the value inferred from the analysis of the cosmic microwave background. We find that the SNe Ia distance moduli calibrated with SBF are on average larger by 0.07 mag than those calibrated with Cepheids. Our results point to possible differences among SNe in different types of galaxies, which could originate from different local environments and/or progenitor properties of SNe Ia. Sampling different host galaxy types, SBF offers a complementary approach to using Cepheids, which is important in addressing possible systematics. As the SBF method has the ability to reach larger distances than Cepheids, the impending entry of the Vera C. Rubin Observatory and JWST into operation will increase the number of SNe Ia hosted in galaxies where SBF distances can be measured, making SBF measurements attractive for improving the calibration of SNe Ia, as well as in the estimation of H0.


2019 ◽  
Vol 498 (1) ◽  
pp. 1420-1439 ◽  
Author(s):  
Kenneth C Wong ◽  
Sherry H Suyu ◽  
Geoff C-F Chen ◽  
Cristian E Rusu ◽  
Martin Millon ◽  
...  

ABSTRACT We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analysed blindly with respect to the cosmological parameters. In a flat Λ cold dark matter (ΛCDM) cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73 to 78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints.


2011 ◽  
Vol 20 (06) ◽  
pp. 1153-1166 ◽  
Author(s):  
L. CAMPANELLI ◽  
P. CEA ◽  
G. L. FOGLI ◽  
L. TEDESCO

A cosmological model with anisotropic dark energy is analyzed. The amount of deviation from isotropy of the equation of state of dark energy, the skewness δ, generates an anisotropization of the large-scale geometry of the Universe, quantifiable by means of the actual shear Σ0. Requiring that the level of cosmic anisotropization at the time of decoupling be such that we can solve the "quadrupole problem" of cosmic microwave background radiation, we find that |δ| ~ 10-4 and |Σ_0| ~10-5, compatible with existing limits derived from the magnitude redshift data on Type Ia supernovae.


2012 ◽  
Vol 8 (S289) ◽  
pp. 255-261 ◽  
Author(s):  
James Braatz ◽  
Mark Reid ◽  
Cheng-Yu Kuo ◽  
Violette Impellizzeri ◽  
James Condon ◽  
...  

AbstractTo constrain models of dark energy, a precise measurement of the Hubble constant, H0, provides a powerful complement to observations of the cosmic microwave background. Recent, precise measurements of H0 have been based on the ‘extragalactic distance ladder,’ primarily using observations of Cepheid variables and Type Ia supernovae as standard candles. In the past, these methods have been limited by systematic errors, so independent methods of measuring H0 are of high value. Direct geometric distance measurements to circumnuclear H2O megamasers in the Hubble flow provide a promising new method to determine H0. The Megamaser Cosmology Project (MCP) is a systematic effort to discover suitable H2O megamasers and determine their distances, with the aim of measuring H0 to a few percent. Based on observations of megamasers in UGC 3789 and NGC 6264, and preliminary results from Mrk 1419, the MCP has so far measured H0 = 68.0 ± 4.8 km s−1 Mpc−1. This measurement will improve as distances to additional galaxies are incorporated. With the Green Bank Telescope, we recently discovered three more excellent candidates for distance measurements, and we are currently acquiring data to measure their distances.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Debabrata Adak

AbstractWe study the observational aspects of Einstein Yang Mills Higgs dark energy model and constrain the parameters space from the latest observational data from type Ia supernovae, observational Hubble data, baryon acoustic oscillation data and cosmic microwave background radiation shift parameter data. It is found from the analysis of data that the Higgs field in presence of gauge fields can successfully describe the present accelerated expansion of the universe consistent with the astrophysical observations.


2012 ◽  
Vol 8 (S289) ◽  
pp. 13-25 ◽  
Author(s):  
G. A. Tammann ◽  
B. Reindl

AbstractAllan Sandage returned to the distance scale and the calibration of the Hubble constant again and again during his active life, experimenting with different distance indicators. In 1952 his proof of the high luminosity of Cepheids confirmed Baade's revision of the distance scale (H0 ~ 250 km s−1 Mpc−1). During the next 25 years, he lowered the value to 75 and 55. Upon the arrival of the Hubble Space Telescope, he observed Cepheids to calibrate the mean luminosity of nearby Type Ia supernovae (SNe Ia) which, used as standard candles, led to the cosmic value of H0 = 62.3 ± 1.3 ± 5.0 km s−1 Mpc−1. Eventually he turned to the tip of the red giant branch (TRGB) as a very powerful distance indicator. A compilation of 176 TRGB distances yielded a mean, very local value of H0 = 62.9 ± 1.6 km s−1 Mpc−1 and shed light on the streaming velocities in the Local Supercluster. Moreover, TRGB distances are now available for six SNe Ia; if their mean luminosity is applied to distant SNe Ia, one obtains H0 = 64.6 ± 1.6 ± 2.0 km s−1 Mpc−1. The weighted mean of the two independent large-scale calibrations yields H0 = 64.1 km s−1 Mpc−1 within 3.6%.


2020 ◽  
pp. 1-20
Author(s):  
G.S. Sharov ◽  
E.S. Sinyakov

We analyze how predictions of cosmological models depend on a choice of described observational data, restrictions on flatness, and how this choice can alleviate the H tension. These effects are demonstrated in the wCDM model in comparison with the standard ΛCDM model. We describe the Pantheon sample observations of Type Ia supernovae, 31 Hubble parameter data points H(z) from cosmic chronometers, the extended sample with 57 H(z) data points and observational manifestations of cosmic microwave background radiation (CMB). For the wCDM and ΛCDM models in the flat case and with spatial curvature, we calculate χfunctions for all observed data in different combinations, estimate optimal values of model parameters and their expected intervals. For both considered models the results essentially depend on a choice of data sets. In particular, for the wCDM model with H(z) data, supernovae and CMB the 1σ estimations may vary from H = 67.52km /(s·Mpc) (for all N = 57 Hubble parameter data points) up to H = 70.87 /(s·Mpc) for the flat case (k = 0) and N = 31. These results might be a hint how to alleviate the problem of H tension: different estimates of the Hubble constant may be connected with filters and a choice of observational data.


2020 ◽  
Vol 500 (3) ◽  
pp. 3728-3742
Author(s):  
Thomas M Sedgwick ◽  
Chris A Collins ◽  
Ivan K Baldry ◽  
Philip A James

ABSTRACT The discrepancy between estimates of the Hubble constant (H0) measured from local (z ≲  0.1) scales and from scales of the sound horizon is a crucial problem in modern cosmology. Peculiar velocities (vpec) of standard candle distance indicators can systematically affect local H0 measurements. We here use 2MRS galaxies to measure the local galaxy density field, finding a notable z  &lt;  0.05 underdensity in the SGC-6dFGS region of 27  ±  2 per cent. However, no strong evidence for a ‘Local Void’ pertaining to the full 2MRS sky coverage is found. Galaxy densities are used to measure a density parameter, Δϕ+−, which we introduce as a proxy for vpec that quantifies density gradients along a supernova (SN) line of sight. Δϕ+− is found to correlate with local H0 estimates from 88 Pantheon Type Ia supernovae (SNe Ia; 0.02  &lt;  z  &lt;  0.05). Density structures on scales of ∼50 Mpc are found to correlate strongest with H0 estimates in both the observational data and in mock data from the MDPL2-Galacticus simulation. Using trends of H0 with Δϕ+−, we can correct for the effects of density structure on local H0 estimates, even in the presence of biased vpec. However, the difference in the inferred H0 estimate with and without the peculiar velocity correction is limited to &lt; 0.1  per cent. We conclude that accounting for environmentally induced peculiar velocities of SN Ia host galaxies does not resolve the tension between local and CMB-derived H0 estimates.


2011 ◽  
Vol 20 (06) ◽  
pp. 1039-1051 ◽  
Author(s):  
NINFA RADICELLA ◽  
MAURO SERENO ◽  
ANGELO TARTAGLIA

The cosmic defect theory has been confronted with four observational constraints: primordial nuclear species abundances emerging from the big bang nucleosynthesis; large scale structure formation in the Universe; cosmic microwave background acoustic scale; luminosity distances of type Ia supernovae. The test has been based on a statistical analysis of the a posteriori probabilities for three parameters of the theory. The result has been quite satisfactory and such that the performance of the theory is not distinguishable from that of the ΛCDM theory. The use of the optimal values of the parameters for the calculation of the Hubble constant and the age of the Universe confirms the compatibility of the cosmic defect approach with observations.


Sign in / Sign up

Export Citation Format

Share Document