scholarly journals Implementation of stellar heating feedback in simulations of star cluster formation: effects on the initial mass function

2020 ◽  
Vol 496 (4) ◽  
pp. 5201-5210 ◽  
Author(s):  
Sajay Sunny Mathew ◽  
Christoph Federrath

ABSTRACT Explaining the initial mass function (IMF) of stars is a long-standing problem in astrophysics. The number of complex mechanisms involved in the process of star cluster formation, such as turbulence, magnetic fields, and stellar feedback, make understanding and modelling the IMF a challenging task. In this paper, we aim to assert the importance of stellar heating feedback in the star cluster formation process and its effect on the shape of the IMF. We use an analytical sub-grid model to implement the radiative feedback in fully three-dimensional magnetohydrodynamical (MHD) simulations of star cluster formation, with the ultimate objective of obtaining numerical convergence on the IMF. We compare a set of MHD adaptive mesh refinement simulations with three different implementations of the heating of the gas: (1) a polytropic equation of state, (2) a spherically symmetric stellar heating feedback, and (3) our newly developed polar heating model that takes into account the geometry of the accretion disc and the resulting shielding of stellar radiation by dust. For each of the three heating models, we analyse the distribution of stellar masses formed in 10 molecular cloud simulations with different realizations of the turbulence to obtain a statistically representative IMF. We conclude that stellar heating feedback has a profound influence on the number of stars formed and plays a crucial role in controlling the IMF. We find that the simulations with the polar heating model achieve the best convergence on the observed IMF.

2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


2006 ◽  
Vol 460 (1) ◽  
pp. 133-144 ◽  
Author(s):  
F. Damiani ◽  
G. Micela ◽  
S. Sciortino ◽  
N. Huélamo ◽  
A. Moitinho ◽  
...  

2020 ◽  
Vol 497 (1) ◽  
pp. 336-351 ◽  
Author(s):  
Piyush Sharda ◽  
Christoph Federrath ◽  
Mark R Krumholz

ABSTRACT Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the formation of the first stars in the Universe at redshifts of 15 and above. In this work, we study how these magnetic fields potentially impact the initial mass function (IMF) of the first stars. We perform 200 high-resolution, three-dimensional (3D), magnetohydrodynamic (MHD) simulations of the collapse of primordial clouds with different initial turbulent magnetic field strengths as predicted from turbulent dynamo theory in the early Universe, forming more than 1100 first stars in total. We detect a strong statistical signature of suppressed fragmentation in the presence of strong magnetic fields, leading to a dramatic reduction in the number of first stars with masses low enough that they might be expected to survive to the present-day. Additionally, strong fields shift the transition point where stars go from being mostly single to mostly multiple to higher masses. However, irrespective of the field strength, individual simulations are highly chaotic, show different levels of fragmentation and clustering, and the outcome depends on the exact realization of the turbulence in the primordial clouds. While these are still idealized simulations that do not start from cosmological initial conditions, our work shows that magnetic fields play a key role for the primordial IMF, potentially even more so than for the present-day IMF.


2021 ◽  
Vol 923 (1) ◽  
pp. 43
Author(s):  
Pieter van Dokkum ◽  
Charlie Conroy

Abstract Mass measurements and absorption-line studies indicate that the stellar initial mass function (IMF) is bottom-heavy in the central regions of many early-type galaxies, with an excess of low-mass stars compared to the IMF of the Milky Way. Here we test this hypothesis using a method that is independent of previous techniques. Low-mass stars have strong chromospheric activity characterized by nonthermal emission at short wavelengths. Approximately half of the UV flux of M dwarfs is contained in the λ1215.7 Lyα line, and we show that the total Lyα emission of an early-type galaxy is a sensitive probe of the IMF with a factor of ∼2 flux variation in response to plausible variations in the number of low-mass stars. We use the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the Lyα line in the centers of the massive early-type galaxies NGC 1407 and NGC 2695. We detect Lyα emission in both galaxies and demonstrate that it originates in stars. We find that the Lyα to i-band flux ratio is a factor of 2.0 ± 0.4 higher in NGC 1407 than in NGC 2695, in agreement with the difference in their IMFs as previously determined from gravity-sensitive optical absorption lines. Although a larger sample of galaxies is required for definitive answers, these initial results support the hypothesis that the IMF is not universal but varies with environment.


2004 ◽  
Vol 215 ◽  
pp. 83-84
Author(s):  
J. Zorec ◽  
R. Levenhagen ◽  
J. Chauville ◽  
Y. Frémat ◽  
D. Ballereau ◽  
...  

Allowing for systematic differences in the counting of Be Stars due to their overluminosity, changes produced by their fast rotation on spectral types and time spent in the main sequence, a difference between the IMF (Be) and IMF(B) appears, which indicates that the appearance of the Be phenomenon may relay on differences in the initial star formation conditions.


1987 ◽  
Vol 127 ◽  
pp. 167-177
Author(s):  
R. W. O'Connell

Star formation, probably with an abnormal initial mass function, represents the most plausible sink for the large amounts of material being accreted by cD galaxies from cooling flows. There are three prominent cases (NGC 1275, PKS 0745-191, and Abell 1795) where cooling flows have apparently induced unusual stellar populations. Recent studies show that about 50% of other accreting cD's have significant ultraviolet excesses. It therefore appears that detectable accretion populations are frequently associated with cooling flows. The questions of the form of the IMF, the fraction of the flow forming stars, and the lifetime of the flow remain open.


1977 ◽  
Vol 45 ◽  
pp. 161-164
Author(s):  
W. David Arnett

Preliminary estimates are made of the absolute yields of abundant nuclei synthesized in observed stars. The compositions of helium stars of mass 3 ≤ Mα / Mʘ≤ 64 are presented, taken at the instant of instability. These stars of mass Mα are identified with stars of main sequence mass M. The amount of synthesized matter for each mass M ≥ MʘHe is estimated (Table 1). Using a variety of choices for the initial mass function (IMF) the yield per stellar generation is calculated. For standard choices of the IMF the absolute and relative yields of12C,16O,20Ne,24Mg, the Si to Ca group and the iron group agree with solar system values, to the accuracy of the calculations.


2019 ◽  
Vol 14 (S351) ◽  
pp. 438-441 ◽  
Author(s):  
Mirek Giersz ◽  
Abbas Askar ◽  
Long Wang ◽  
Arkadiusz Hypki ◽  
Agostino Leveque ◽  
...  

AbstractWe investigate the dissolution process of star clusters embedded in an external tidal field and harboring a subsystem of stellar-mass black hole. For this purpose we analyzed the MOCCA models of real star clusters contained in the Mocca Survey Database I. We showed that the presence of a stellar-mass black hole subsystem in tidally filling star cluster can lead to abrupt cluster dissolution connected with the loss of cluster dynamical equilibrium. Such cluster dissolution can be regarded as a third type of cluster dissolution mechanism. We additionally argue that such a mechanism should also work for tidally under-filling clusters with a top-heavy initial mass function.


2020 ◽  
Vol 499 (1) ◽  
pp. 559-572
Author(s):  
Carlo Nipoti ◽  
Carlo Cannarozzo ◽  
Francesco Calura ◽  
Alessandro Sonnenfeld ◽  
Tommaso Treu

ABSTRACT The stellar initial mass function (IMF) is believed to be non-universal among early-type galaxies (ETGs). Parametrizing the IMF with the so-called IMF mismatch parameter αIMF, which is a measure of the stellar mass-to-light ratio of an ensemble of stars and thus of the ‘heaviness’ of its IMF, one finds that for ETGs αe (i.e. αIMF integrated within the effective radius Re) increases with σe (the line-of-sight velocity dispersion σlos integrated within Re) and that, within the same ETG, αIMF tends to decrease outwards. We study the effect of dissipationless (dry) mergers on the distribution of the IMF mismatch parameter αIMF in ETGs using the results of binary major and minor merging simulations. We find that dry mergers tend to make the αIMF profiles of ETGs shallower, but do not alter significantly the shape of the distributions in the spatially resolved σlos–αIMF space. Individual galaxies undergoing dry mergers tend to decrease their αe, due to erosion of αIMF gradients and mixing with stellar populations with lighter IMF. Their σe can either decrease or increase, depending on the merging orbital parameters and mass ratio, but tends to decrease for cosmologically motivated merging histories. The αe–σe relation can vary with redshift as a consequence of the evolution of individual ETGs: based on a simple dry-merging model, ETGs of given σe are expected to have higher αe at higher redshift, unless the accreted satellites are so diffuse that they contribute negligibly to the inner stellar distribution of the merger remnant.


Sign in / Sign up

Export Citation Format

Share Document