scholarly journals WISE J044232.92+322734.9: A star-forming galaxy at redshift 1.1 seen through a Galactic dust clump?

2020 ◽  
Vol 643 ◽  
pp. A97
Author(s):  
O. Miettinen

Context. Physically unassociated background or foreground objects seen towards submillimetre sources are potential contaminants of both the studies of young stellar objects embedded in Galactic dust clumps and multiwavelength counterparts of submillimetre galaxies (SMGs). Aims. We aim to search for and characterise the properties of a potential extragalactic object seen in projection towards a Galactic dust clump. Methods. We employed the near-infrared (3.4 μm and 4.6 μm) and mid-infrared (12 μm and 22 μm) data from the Wide-field Infrared Survey Explorer (WISE) and the submillimetre data from the Planck satellite. Results. We uncovered a source, namely the WISE source J044232.92+322734.9 (hereafter J044232.92), which is detected in the W1–W3 bands of WISE, but undetected at 22 μm (W4), and whose WISE infrared (IR) colours suggest that it is a star-forming galaxy (SFG). This source is seen in projection towards the Planck-detected dust clump PGCC G169.20-8.96, which likely belongs to the Taurus-Auriga cloud complex, at a distance of 140 pc. We used the MAGPHYS+photo-z spectral energy distribution (SED) code to derive the photometric redshift and physical properties of J044232.92. The redshift was derived to be zphot = 1.132−0.165+0.280, while, for example, the stellar mass, IR (8–1000 μm) luminosity, and star formation rate were derived to be M⋆ = 4.6−2.5+4.7 × 1011 M⊙, LIR = 2.8−1.5+5.7 × 1012 L⊙, and SFR = 191−146+580 M⊙ yr−1 (or 281−155+569 M⊙ yr−1 when estimated from the IR luminosity). The derived value of LIR suggests that J044232.92 could be an ultraluminous IR galaxy, and we found that it is consistent with a main sequence SFG at a redshift of 1.132. Conclusions. The estimated physical properties of J044232.92 are comparable to those of SMGs, except that the derived stellar mass of J044232.92 appears somewhat higher (by a factor of 4–5) than the average stellar masses of SMGs. However, the stellar mass difference could just reflect the poorly sampled SED in the ultraviolet, optical, and near-IR regimes. Indeed, the SED of J044232.92 could not be well constrained using the currently available data (WISE only), and hence the derived redshift of the source and its physical properties should be taken as preliminary estimates. Further observations, in particular high-resolution (sub-)millimetre and radio continuum imaging, are needed to better constrain the redshift and physical properties of J044232.92 and to see if the source really is a galaxy seen through a Galactic dust clump, in particular an SMG population member at z ∼ 1.1.

2019 ◽  
Vol 631 ◽  
pp. A123 ◽  
Author(s):  
Fang-Ting Yuan ◽  
Denis Burgarella ◽  
David Corre ◽  
Veronique Buat ◽  
Médéric Boquien ◽  
...  

Context. Nebular emission lines are critical to measure physical properties in the ionized gas (e.g., metallicity, the star formation rate, or dust attenuation). They also account for a significant fraction of broadband fluxes, in particular at the highest redshifts, and therefore can strongly affect the determination of other physical properties, such as the stellar mass, which are crucial in shaping our understanding of galaxy formation and evolution. Aims. We investigate a sample of 51 Lyman break galaxies at 3.0 <  zspec <  3.8 with detected [OIII] line emissions and estimated the physical properties of these galaxies to examine the impact of including nebular emission data in the Spectral energy distribution (SED) fitting. Methods. We used the Code Investigating GALaxy Emission (CIGALE) to fit the rest-frame ultraviolet-to-near-infrared SEDs of these galaxies and their emission line data simultaneously. We ran CIGALE with and without the nebular model or the emission line data, and compare the results to show the importance of including the nebular emission line data in the SED fitting. Results. We find that without the nebular model, the SED fitting overestimates the stellar mass due to the strong [OIII] lines that are redshifted to the Ks-band, which is consistent with previous results. The emission line data are necessary to constrain the nebular model in the SED fitting. We examine the Ks-band excess, which is mostly used to estimate the emissions of the [OIII]+Hβ lines when there is no spectral data, and we find that the estimation and observation are statistically consistent. However, the difference can reach up to more than 1 dex in some catastrophic cases, which shows the importance of obtaining spectroscopic measurements for these lines. We also estimate the equivalent width of the Hβ absorption and find it negligible compared to the Hβ emission. Conclusions. Line emission is important to constrain the nebular models and to obtain reliable estimates of the physical properties of galaxies. These data should be taken into account in the SED fitting.


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


2020 ◽  
Vol 492 (4) ◽  
pp. 5592-5606 ◽  
Author(s):  
A Katsianis ◽  
V Gonzalez ◽  
D Barrientos ◽  
X Yang ◽  
C D P Lagos ◽  
...  

ABSTRACT There is a severe tension between the observed star formation rate (SFR)–stellar mass (M⋆) relations reported by different authors at z = 1–4. In addition, the observations have not been successfully reproduced by state-of-the-art cosmological simulations that tend to predict a factor of 2–4 smaller SFRs at a fixed M⋆. We examine the evolution of the SFR–M⋆ relation of z = 1–4 galaxies using the skirt simulated spectral energy distributions of galaxies sampled from the Evolution and Assembly of GaLaxies and their Environments simulations. We derive SFRs and stellar masses by mimicking different observational techniques. We find that the tension between observed and simulated SFR–M⋆ relations is largely alleviated if similar methods are used to infer the galaxy properties. We find that relations relying on infrared wavelengths (e.g. 24 ${\rm \, \mu m}$, MIPS – 24, 70, and 160 ${\rm \, \mu m}$ or SPIRE – 250, 350, and 500 ${\rm \, \mu m}$) have SFRs that exceed the intrinsic relation by 0.5 dex. Relations that rely on the spectral energy distribution fitting technique underpredict the SFRs at a fixed stellar mass by −0.5 dex at z ∼ 4 but overpredict the measurements by 0.3 dex at z ∼ 1. Relations relying on dust-corrected rest-frame ultraviolet luminosities, are flatter since they overpredict/underpredict SFRs for low/high star-forming objects and yield deviations from the intrinsic relation from 0.10 to −0.13 dex at z ∼ 4. We suggest that the severe tension between different observational studies can be broadly explained by the fact that different groups employ different techniques to infer their SFRs.


2020 ◽  
Vol 496 (1) ◽  
pp. 875-887 ◽  
Author(s):  
M Romano ◽  
P Cassata ◽  
L Morselli ◽  
B C Lemaux ◽  
M Béthermin ◽  
...  

ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $z$ ∼ 4.6 or high-J CO transitions at $z$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $z$ = 4.6 (i.e. [C ii] emitter) with $\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $z$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z &lt; 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages &lt; 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of &lt;0.1 dex.


2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2019 ◽  
Vol 489 (2) ◽  
pp. 1770-1786 ◽  
Author(s):  
Ruihan Henry Liu ◽  
Ryley Hill ◽  
Douglas Scott ◽  
Omar Almaini ◽  
Fangxia An ◽  
...  

ABSTRACT Identifying the counterparts of submillimetre (submm) galaxies (SMGs) in multiwavelength images is a critical step towards building accurate models of the evolution of strongly star-forming galaxies in the early Universe. However, obtaining a statistically significant sample of robust associations is very challenging due to the poor angular resolution of single-dish submm facilities. Recently, a large sample of single-dish-detected SMGs in the UKIDSS UDS field, a subset of the SCUBA-2 Cosmology Legacy Survey (S2CLS), was followed up with the Atacama Large Millimeter/submillimeter Array (ALMA), which has provided the resolution necessary for identification in optical and near-infrared images. We use this ALMA sample to develop a training set suitable for machine-learning (ML) algorithms to determine how to identify SMG counterparts in multiwavelength images, using a combination of magnitudes and other derived features. We test several ML algorithms and find that a deep neural network performs the best, accurately identifying 85 per cent of the ALMA-detected optical SMG counterparts in our cross-validation tests. When we carefully tune traditional colour-cut methods, we find that the improvement in using machine learning is modest (about 5 per cent), but importantly it comes at little additional computational cost. We apply our trained neural network to the GOODS-North field, which also has single-dish submm observations from the S2CLS and deep multiwavelength data but little high-resolution interferometric submm imaging, and we find that we are able to classify SMG counterparts for 36/67 of the single-dish submm sources. We discuss future improvements to our ML approach, including combining ML with spectral energy distribution fitting techniques and using longer wavelength data as additional features.


2019 ◽  
Vol 625 ◽  
pp. A49 ◽  
Author(s):  
M. Koutoulaki ◽  
S. Facchini ◽  
C. F. Manara ◽  
A. Natta ◽  
R. Garcia Lopez ◽  
...  

Context. RW Aur A is a classical T Tauri star that has suddenly undergone three major dimming events since 2010. The reason for these dimming events is still not clear. Aims. We aim to understand the dimming properties, examine accretion variability, and derive the physical properties of the inner disc traced by the CO ro-vibrational emission at near-infrared wavelengths (2.3 μm). Methods. We compared two epochs of X-shooter observations, during and after the dimming. We modelled the rarely detected CO bandhead emission in both epochs to examine whether the inner disc properties had changed. The spectral energy distribution was used to derive the extinction properties of the dimmed spectrum and compare the infrared excess between the two epochs. Lines tracing accretion were used to derive the mass accretion rate in both states. Results. The CO originates from a region with physical properties of T = 3000 K, NCO = 1 × 1021 cm−2 and vk sin i = 113 km s−1. The extinction properties of the dimming layer were derived with the effective optical depth ranging from τeff ~2.5−1.5 from the UV to the near-IR. The inferred mass accretion rate Ṁacc is ~1.5 × 10−8 M⊙ yr−1 and ~2 × 10−8 M⊙ yr−1 after and during the dimming respectively. By fitting the spectral energy distribution, additional emission is observed in the infrared during the dimming event from dust grains with temperatures of 500–700 K. Conclusions. The physical conditions traced by the CO are similar for both epochs, indicating that the inner gaseous disc properties do not change during the dimming events. The extinction curve is flatter than that of the interstellar medium, and large grains of a few hundred microns are thus required. When we correct for the observed extinction, the mass accretion rate is constant in the two epochs, suggesting that the accretion is stable and therefore does not cause the dimming. The additional hot emission in the near-IR is located at about 0.5 au from the star and is not consistent with an occulting body located in the outer regions of the disc. The dimming events could be due to a dust-laden wind, a severe puffing-up of the inner rim, or a perturbation caused by the recent star-disc encounter.


2020 ◽  
Vol 640 ◽  
pp. L8 ◽  
Author(s):  
Hideki Umehata ◽  
Ian Smail ◽  
A. M. Swinbank ◽  
Kotaro Kohno ◽  
Yoichi Tamura ◽  
...  

Deep surveys with the Atacama Large Millimeter Array (ALMA) have uncovered a population of dusty star-forming galaxies which are faint or even undetected at optical to near-infrared wavelengths. Their faintness at short wavelengths makes the detailed characterization of the population challenging. Here we present a spectroscopic redshift identification and a characterization of one of these near-infrared-dark galaxies discovered by an ALMA deep survey. The detection of [C I](1–0) and CO(4–3) emission lines determines the precise redshift of the galaxy, ADF22.A2, to be z = 3.9913 ± 0.0008. On the basis of a multi-wavelength analysis, ADF22.A2 is found to be a massive, star-forming galaxy with a stellar mass of M∗ = 1.1−0.6+1.3 × 1011 M⊙ and SFR = 430−150+230 M⊙ yr−1. The molecular gas mass was derived to be M(H2)[CI] = (5.9 ± 1.5)×1010 M⊙, indicating a gas fraction of ≈35%, and the ratios of L[CI](1−0)/LIR and L[CI](1−0)/LCO(4−3) suggest that the nature of the interstellar medium in ADF22.A2 is in accordance with those of other bright submillimeter galaxies. The properties of ADF22.A2, including the redshift, star-formation rate, stellar mass, and depletion time scale (τdep ≈ 0.1−0.2 Gyr), also suggest that ADF22.A2 has the characteristics expected for the progenitors of quiescent galaxies at z ≳ 3. Our results demonstrate the power of ALMA contiguous mapping and line scan, which help us to obtain an unbiased view of galaxy formation in the early Universe.


Sign in / Sign up

Export Citation Format

Share Document