scholarly journals The nearby magnetic cool DZ white dwarf PM J08186−3110

2020 ◽  
Vol 500 (2) ◽  
pp. 2732-2740
Author(s):  
Adela Kawka ◽  
Stéphane Vennes ◽  
Nicole F Allard ◽  
T Leininger ◽  
F X Gadéa

ABSTRACT We present an analysis of photometric, spectroscopic, and spectropolarimetric data of the nearby, cool, magnetic DZ white dwarf PM J08186−3110. High-dispersion spectra show the presence of Zeeman splitted spectral lines due to the presence of a surface average magnetic field of 92 kG. The strong magnesium and calcium lines show extended wings shaped by interactions with neutral helium in a dense, cool helium-rich atmosphere. We found that the abundance of heavy elements varied between spectra taken 10 years apart but we could not establish a time-scale for these variations; such variations may be linked to surface abundance variations in the magnetized atmosphere. Finally, we show that volume-limited samples reveal that about 40 per cent of DZ white dwarfs with effective temperatures below 7000 K are magnetic.

2019 ◽  
Vol 489 (3) ◽  
pp. 3648-3654 ◽  
Author(s):  
Mukremin Kilic ◽  
B Rolland ◽  
P Bergeron ◽  
Z Vanderbosch ◽  
P Benni ◽  
...  

ABSTRACT G183−35 is an unusual white dwarf that shows an H α line split into five components, instead of the usual three components seen in strongly magnetic white dwarfs. Potential explanations for the unusual set of lines include a double degenerate system containing two magnetic white dwarfs and/or rotational modulation of a complex magnetic field structure. Here, we present time-resolved spectroscopy of G183−35 obtained at the Gemini Observatory. These data reveal two sets of absorption lines that appear and disappear over a period of about 4 h. We also detect low-level (0.2 per cent) variability in optical photometry at the same period. We demonstrate that the spectroscopic and photometric variability can be explained by the presence of spots on the surface of the white dwarf and a change in the average field strength from about 4.6 to 6.2 MG. The observed variability is clearly due to G183−35’s relatively short spin period. However, rotational modulation of a complex magnetic field by itself cannot explain the changes seen in the central H α component. An additional source of variability in the line profiles, most likely due to a chemically inhomogeneous surface composition, is also needed. We propose further observations of similar objects to test this scenario.


1987 ◽  
Vol 93 ◽  
pp. 47-51
Author(s):  
E.M. Sion

AbstractWith the recent detection of direct white dwarf photospheric radiation from certain cataclysmic variables in quiescent (low accretion) states, important implications and clues about the nature and long-term evolution of cataclysmic variables can emerge from an analysis of their physical properties. Detection of the underlying white dwarfs has led to a preliminary empirical CV white dwarf temperature distribution function and, in a few cases, the first detailed look at a freshly accreted while dwarf photosphere. The effective temperatures of CV white dwarfs plotted versus orbital period for each type of CV appears to reveal a tendency for the cooler white dwarf primaries to reside in the shorter period systems. Possible implications are briefly discussed.


2000 ◽  
Vol 176 ◽  
pp. 525-526
Author(s):  
Atsuko Nitta ◽  
A. Mukadam ◽  
D. E. Winget ◽  
A. Kanaan ◽  
S. J. Kleinman ◽  
...  

AbstractWe are searching for pulsations in cool (< 6000 K) white dwarfs (WDs), hoping to apply asteroseismological techniques to improve our understanding of their structure and the physical processes inside them. This information is important as we use cool WDs to estimate the lower limit of the age of the Galactic disk. Within a spectroscopic and photometric survey of 110 cool WDs by Bergeron, Ruiz, & Legget, we find 28 candidates with appropriate effective temperatures, masses, and chemical compositions for possible pulsations in nonradial g modes with periods similar to those we observe in DAVs. So far, we have observed 4 candidates, but have found no evidence of large variation.


1971 ◽  
Vol 42 ◽  
pp. 67-76 ◽  
Author(s):  
J. B. Oke ◽  
H. L. Shipman

White dwarf stars are among the most challenging and interesting objects which can be studied. Because they represent the interiors of highly-evolved stars, the chemical composition can be enormously variable from object to object. Furthermore, because of the very large gravities, the composition of the atmosphere may be very different from that in the interior. The theory of the degenerate interior provides a relation among mass, radius and chemical composition. Since temperatures, effective gravities, and redshifts can, for certain stars, provide further relations between mass and radius, one can hope to make checks on the theory which are not possible with ordinary stars.


1989 ◽  
Vol 114 ◽  
pp. 337-340
Author(s):  
J.P. Lasota ◽  
J.M. Hameury ◽  
A.R. King

We show that the existence of the AM Her period spike implies (i) a unique white dwarf mass ≃ 0.6 − 0.7M⊙ for most magnetic CV’s (ii) nova explosions remove exactly the accreted mass from magnetic white dwarfs, and (iii) the maximum magnetic field for most CV’s is ≤ 4 × 107 G. The existence of the spike is very strong support for the idea that the period gap results from a drastic reduction of angular momentum losses when the secondary star becomes fully convective.


1980 ◽  
Vol 5 ◽  
pp. 255-262
Author(s):  
Jesse L. Greenstein

Extensive mass loss is observed for hot subluminous stars, through P Cygni lines in the ultraviolet. This persists in some sub-dwarf 0 stars, but is generally not observed in white dwarfs. The ultraviolet provides determination of effective temperatures. Among nine sdO’s, the maximum temperature reported is definitely below 60, 000 K; an object at 100, 000 K would be distinguishable. The sdO’s show a wide variety of line strengths, notably in N V, C IV and Si TV, as well as He II. One halo sdB is reported as rich in peculiar elements; it shows anomalous N V for its temperature. The comparison of effective temperatures of white dwarfs observed from space and from the ground gives excellent agreement. The hottest white dwarfs are near 60, 000 K, although one (helium-rich) reaches 80, 000 K. Another helium-rich close binary probably has an accretion disk; it is the only white dwarf to show the expanding shell of N V, C IV, Si IV characteristic of some subdwarfs. Two magnetic white dwarfs have been observed; one has strong unidentifiable features and the smallest known radius.


1989 ◽  
Vol 114 ◽  
pp. 92-96 ◽  
Author(s):  
Paula Szkody ◽  
Edward M. Sion

Through the use of accreting binary systems, it is possible to study the effects of the deposition of matter and energy on the surface of a white dwarf. The observed atmospheric properties of composition and temperature obtained from direct observation of the spectral lines and the continuum flux can be used to compare with those of single white dwarfs to understand the consequences of mass accretion on binary evolution.Cataclysmic variables provide one of the best targets for this type of study because a) the primaries are all white dwarfs b) the level and the timescale of the accretion cover a large range from the high rate, relatively steady novalike accretors to the dwarf novae systems which are modulated on short timescales in a quasi-periodic manner. Unfortunately, due to the mass transfer process, an accretion disk builds up to the point where its radiation overwhelms the white dwarf light in most cases. Thus, to study the effects on the stellar primary, systems must be found which have low mass transfer rates (generally the short orbital period systems (Patterson 1984)) and/or high inclinations (since most of the disk flux emerges perpendicular to the plane of the disk). The best identification of the white dwarf emerges from IUE spectra which show a broad Lyman α absorption profile (in contrast to the normal emission lines from a disk at quiescence). The shape of this profile provides a sensitive indicator of the temperature and gravity. In some cases, broad absorption lines are also evident in the optical Balmer lines, although the broad emission lines from the disk usually make these difficult to detect. The steeply falling flux distribution of a white dwarf throughout the optical region, combined with a flat disk distribution usually means that the white dwarf contributes a minor amount to the optical flux. However, in the ultraviolet, the rising energy distribution of the white dwarf easily dominates the falling energy distribution of a low accretion rate disk (Mateo and Szkody 1984). White dwarfs are generally acknowledged to be prominent in the dwarf novae U Gem (Panek and Holm 1984), VW Hyi (Mateo and Szkody 1984) and Z Cha (Marsh, Horne and Shipman 1987) and suggested in EK TrA and WZ Sge (Verbunt 1987). In addition, the white dwarf has been seen in some novalike systems which sporadically turn off their mass transfer, (resulting in the disappearance of most of the disk and the resulting appearance of the white dwarf). This has been the case in TT Ari (Shafter et al. 1985) and some limits have been determined for MV Lyr (Szkody and Downes 1982) and V794 Aql (Szkody, Downes and Mateo 1988). Several magnetic white dwarfs have also been seen when the mass transfer ceases in the AM Her systems (summarized in Szkody, Downes and Mateo 1988).


1996 ◽  
Vol 152 ◽  
pp. 203-210
Author(s):  
Martin A. Barstow ◽  
Ivan Hubeny ◽  
Thierry Lanz ◽  
Jay B. Holberg ◽  
Edward M. Sion

The ROSAT and EUVE all-sky surveys have resulted in an important change in our understanding of the general composition of hydrogen-rich DA white dwarf atmospheres, with the photospheric opacity dominated by heavy elements rather than helium in the hottest stars (T > 40, 000 K). Most stars cooler than 40,000 K have more or less pure H atmospheres. However, one question, which has not been resolved, concerned the specific nature of the heavy elements and the role of helium in the hottest white dwarfs. One view of white dwarf evolution requires that H-rich DA stars form by gravitational settling of He from either DAO or He-rich central stars of planetary nebulae. In this case, the youngest (hottest) DA white dwarfs may still contain visible traces of He. Spectroscopic observations now available with EUVE provide a crucial test of these ideas. Analysis of data from the EUVE Guest Observer programme and EUVE public archive allows quantitative consideration of the sources of EUV opacity and places limits on the abundance of He which may be present.


2020 ◽  
Vol 643 ◽  
pp. A134 ◽  
Author(s):  
Stefano Bagnulo ◽  
John D. Landstreet

The sample of white dwarfs included in the local 20 pc volume documents, fairly accurately, the total production of white dwarfs over roughly 10 Gyr of stellar evolution in this part of the Milky Way Galaxy. In this sample, we have been systematically searching for magnetic white dwarfs. Here we report the discovery of six new magnetic white dwarfs, with a field strength from a few MG to about 200 MG. Two of these stars show H lines that are split and polarised by the magnetic field. One star shows extremely weak spectral lines in intensity, to which highly polarised narrow features correspond. The three other stars have featureless flux spectra, but show continuum polarisation. These new discoveries support the view that at least 20% of all white dwarfs in the local 20 pc volume have magnetic fields, and they fully confirm the suspicion that magnetism is a common rather than a rare characteristic of white dwarfs. We discuss the level and the handedness of the continuum polarisation in the presence of a magnetic field in cool white dwarfs. We suggest that a magnetic field with a 15 MG longitudinal component produces 1% of continuum circular polarisation. We have also shown that the problem of cross-talk from linear to circular polarisation of the FORS2 instrument, used in our survey, represents an obstacle to accurate measurements of the circular polarisation of faint white dwarfs when the background is illuminated, and polarised, by the moon.


Author(s):  
David J Wilson ◽  
Odette Toloza ◽  
John D Landstreet ◽  
Boris T Gänsicke ◽  
Jeremy J Drake ◽  
...  

Abstract We present the discovery of a magnetic field on the white dwarf component in the detached post common envelope binary (PCEB) CC Cet. Magnetic white dwarfs in detached PCEBs are extremely rare, in contrast to the high incidence of magnetism in single white dwarfs and cataclysmic variables. We find Zeeman-split absorption lines in both ultraviolet Hubble Space Telescope (HST) spectra and archival optical spectra of CC Cet. Model fits to the lines return a mean magnetic field strength of 〈|B|〉 ≈ 600–700 kG. Differences in the best-fit magnetic field strength between two separate HST observations and the high v sin  i of the lines indicate that the white dwarf is rotating with a period ∼0.5 hours, and that the magnetic field is not axisymmetric about the spin axis. The magnetic field strength and rotation period are consistent with those observed among the intermediate polar class of cataclysmic variable, and we compute stellar evolution models that predict CC Cet will evolve into an intermediate polar in 7–17 Gyr. Among the small number of known PCEBs containing a confirmed magnetic white dwarf, CC Cet is the hottest (and thus youngest), with the weakest field strength, and cannot have formed via the recently proposed crystallisation/spin-up scenario. In addition to the magnetic field measurements, we update the atmospheric parameters of the CC Cet white dwarf via model spectra fits to the HST data and provide a refined orbital period and ephemeris from TESS photometry.


Sign in / Sign up

Export Citation Format

Share Document