Instabilities and pulsations in models of the B-type supergiant κ Cassiopeiae (HD 2905)

2020 ◽  
Vol 500 (4) ◽  
pp. 5515-5523
Author(s):  
Abhay Pratap Yadav ◽  
Santosh Joshi ◽  
Wolfgang Glatzel

ABSTRACT For the B-type supergiant κ Cassiopeiae (HD 2905), variabilities with periods between several hours and a few days have been observed both photometrically and spectroscopically. A recent study of this star by Simón-Díaz et al. has revealed variability with a dominant period of 2.7 d. To understand this variability, we present a linear non-adiabatic stability analysis with respect to radial perturbations for models of κ Cassiopeiae. Instabilities associated with the fundamental mode and the first overtone are identified for models with masses between 27 and 44 M⊙. For selected models, the instabilities are followed into the nonlinear regime by numerical simulations. As a result, finite amplitude pulsations with periods between 3 and 1.8 d are found. The model with a mass of 34.5 M⊙ exhibits a pulsation period of 2.7 d consistent with the observations. In the nonlinear regime, the instabilities may cause a substantial inflation of the envelope.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2018 ◽  
Vol 853 ◽  
pp. 205-234 ◽  
Author(s):  
Giulio Facchini ◽  
Benjamin Favier ◽  
Patrice Le Gal ◽  
Meng Wang ◽  
Michael Le Bars

We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonal to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the streamwise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number $Re$ and the Froude number $Fr$, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. $Fr\sim 1$) and above a moderate value of the Reynolds number $Re\gtrsim 700$. The instability results from a wave resonance mechanism already known in the context of channel flows – for instance, unstratified plane Couette flow in the shallow-water approximation. The result is confirmed by fully nonlinear direct numerical simulations and, to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water, linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of $Fr$ and $Re$ indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement.


2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


1989 ◽  
Vol 35 (121) ◽  
pp. 383-391 ◽  
Author(s):  
Deborah S. Loewenherz ◽  
Christopher J. Lawrence ◽  
Richard L. Weaver

AbstractThe stability of a low Reynolds number flow on an inclined plane is investigated with respect to modelling the initiation of transverse wave-like ridges which commonly occur on the surfaces of rock-glacier forms. In accordance with field observations indicating the presence of stratification in rock glaciers, two models of rock-glacier structure are considered, each stratified and possessing a lower layer which is treated as a Newtonian fluid. An upper, less compliant layer is treated, alternatively, as a Newtonian fluid of viscosity greater than that of the lower layer, or as an elastic solid under longitudinal compression induced by a decrease in the slope of the underlying incline. A linear stability analysis is used to examine the behaviour of each of the proposed models, and both are found to generate instabilities at wavelengths comparable to those associated with transverse surficial ridges on rock glaciers. The growth rates of a flow disturbance predicted by the viscous-stratified model appear to be too slow to account fully for the development of wave forms of finite amplitude, suggesting that other mechanisms are involved in the amplification of an initial disturbance. The results of the stability analysis of the elastic lamina model indicate that finite surficial ridges may develop on rock glaciers as a product of a buckling instability in the surface region if there is a decrease in the slope of the underlying incline. Both of the analyses illustrate that transverse ridges can occur on the surface of a rock glacier in the absence of any variations in debris supply to the system. The results further imply that the use of these features in the paleoreconstruction of Holocene climatic conditions must entail an assessment of the relative roles of external climatically driven forcingversusinternal Theologically derived instability.


Author(s):  
Dhanush Vittal Shenoy ◽  
Mostafa Safdari Shadloo ◽  
Jorge Peixinho ◽  
Abdellah Hadjadj

Purpose Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate such fluid flow in expansion pipe systems using direct numerical simulations. The flow in circular diverging pipes with different diverging half angles, namely, 45, 26, 14, 7.2 and 4.7 degrees, are considered. The flow is fed by a fully developed laminar parabolic velocity profile at its inlet and is connected to a long straight circular pipe at its downstream to characterise recirculation zone and skin friction coefficient in the laminar regime. The flow is considered linearly stable for Reynolds numbers sufficiently below natural transition. A perturbation is added to the inlet fully developed laminar velocity profile to test the flow response to finite amplitude disturbances and to characterise sub-critical transition. Design/methodology/approach Direct numerical simulations of the Navier–Stokes equations have been solved using a spectral element method. Findings It is found that the onset of disordered motion and the dynamics of the localised turbulence patch are controlled by the Reynolds number, the perturbation amplitude and the half angle of the pipe. Originality/value The authors clarify different stages of flow behaviour under the finite amplitude perturbations and shed more light to flow physics such as existence of Kelvin–Helmholtz instabilities as well as mechanism of turbulent puff shedding in diverging pipe flows.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Isa Abdullahi Baba ◽  
Bashir Abdullahi Baba ◽  
Parvaneh Esmaili

In this paper, we developed a model that suggests the use of robots in identifying COVID-19-positive patients and which studied the effectiveness of the government policy of prohibiting migration of individuals into their countries especially from those countries that were known to have COVID-19 epidemic. Two compartmental models consisting of two equations each were constructed. The models studied the use of robots for the identification of COVID-19-positive patients. The effect of migration ban strategy was also studied. Four biologically meaningful equilibrium points were found. Their local stability analysis was also carried out. Numerical simulations were carried out, and the most effective strategy to curtail the spread of the disease was shown.


Sign in / Sign up

Export Citation Format

Share Document