scholarly journals Galaxy mass profiles from strong lensing III: The two-dimensional broken power-law model

Author(s):  
C M O’Riordan ◽  
S J Warren ◽  
D J Mortlock

Abstract When modelling strong gravitational lenses, i.e., where there are multiple images of the same source, the most widely used parameterisation for the mass profile in the lens galaxy is the singular power-law model ρ(r)∝r−γ. This model may be insufficiently flexible for very accurate work, for example measuring the Hubble constant based on time delays between multiple images. Here we derive the lensing properties – deflection angle, shear, and magnification – of a more adaptable model where the projected mass surface density is parameterised as a continuous two-dimensional broken power-law (2DBPL). This elliptical 2DBPL model is characterised by power-law slopes t1, t2 either side of the break radius θB. The key to the 2DBPL model is the derivation of the lensing properties of the truncated power law (TPL) model, where the surface density is a power law out to the truncation radius θT and zero beyond. This TPL model is also useful by itself. We create mock observations of lensing by a TPL profile where the images form outside the truncation radius, so there is no mass in the annulus covered by the images. We then show that the slope of the profile interior to the images may be accurately recovered for lenses of moderate ellipticity. This demonstrates that the widely-held notion that lensing measures the slope of the mass profile in the annulus of the images, and is insensitive to the mass distribution at radii interior to the images, is incorrect.

Author(s):  
Xiaoyue Cao ◽  
Ran Li ◽  
James Nightingale ◽  
Richard Massey ◽  
Andrew Robertson ◽  
...  

Abstract The elliptical power-law (EPL) mass model of the mass in a galaxy is widely used in strong gravitational lensing analyses. However, the distribution of mass in real galaxies is more complex. We quantify the biases due to this model mismatch by simulating and then analysing mock {\it Hubble Space Telescope} imaging of lenses with mass distributions inferred from SDSS-MaNGA stellar dynamics data. We find accurate recovery of source galaxy morphology, except for a slight tendency to infer sources to be more compact than their true size. The Einstein radius of the lens is also robustly recovered with 0.1\% accuracy, as is the global density slope, with 2.5\% relative systematic error, compared to the 3.4\% intrinsic dispersion. However, asymmetry in real lenses also leads to a spurious fitted `external shear' with typical strength, $\gamma_{\rm ext}=0.015$. Furthermore, time delays inferred from lens modelling without measurements of stellar dynamics are typically underestimated by $\sim$5\%. Using such measurements from a sub-sample of 37 lenses would bias measurements of the Hubble constant $H_0$ by $\sim$9\%. The next generation cosmography must use more complex lens mass models.


2020 ◽  
Vol 493 (2) ◽  
pp. 1725-1735 ◽  
Author(s):  
C S Kochanek

ABSTRACT It is well known that measurements of H0 from gravitational lens time delays scale as H0 ∝ 1 − κE, where κE is the mean convergence at the Einstein radius RE but that all available lens data other than the delays provide no direct constraints on κE. The properties of the radial mass distribution constrained by lens data are RE and the dimensionless quantity ξ = REα″(RE)/(1 − κE), where α″(RE) is the second derivative of the deflection profile at RE. Lens models with too few degrees of freedom, like power-law models with densities ρ ∝ r−n, have a one-to-one correspondence between ξ and κE (for a power-law model, ξ = 2(n − 2) and κE = (3 − n)/2 = (2 − ξ)/4). This means that highly constrained lens models with few parameters quickly lead to very precise but inaccurate estimates of κE and hence H0. Based on experiments with a broad range of plausible dark matter halo models, it is unlikely that any current estimates of H0 from gravitational lens time delays are more accurate than ${\sim} 10{{\ \rm per\ cent}}$, regardless of the reported precision.


2018 ◽  
Vol 617 ◽  
pp. A140 ◽  
Author(s):  
Olivier Wertz ◽  
Bastian Orthen ◽  
Peter Schneider

The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0 with a competitive precision. However, the tension with H0 obtained from the Planck satellite for a spatially flat ΛCDM cosmology suggests that systematic errors may have been underestimated. The most critical of these errors probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim, we have used pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δtˆ/Δt ≈ βˆ/β, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for nonaxisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.


2015 ◽  
Vol 456 (1) ◽  
pp. 739-755 ◽  
Author(s):  
Dandan Xu ◽  
Dominique Sluse ◽  
Peter Schneider ◽  
Volker Springel ◽  
Mark Vogelsberger ◽  
...  

2020 ◽  
Vol 642 ◽  
pp. A194 ◽  
Author(s):  
D. Gilman ◽  
S. Birrer ◽  
T. Treu

Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H0. The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H0. We base the mock lenses on six quadruply imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H0. However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses.


2012 ◽  
Vol 8 (S289) ◽  
pp. 331-338
Author(s):  
S. H. Suyu

AbstractThe time delays between the multiple images of a strong gravitational-lens system, together with a model of the lens-mass distribution, provide a one-step determination of the time-delay distance, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. I review the recent advances in measuring time-delay distances, and present the current status of cosmological constraints based on gravitational-lens time delays. In particular, I report the time-delay distance measurements of two gravitational lenses and their implication for cosmology from a recent study by Suyuet al.


2019 ◽  
Vol 488 (1) ◽  
pp. 1387-1400 ◽  
Author(s):  
Anowar J Shajib

ABSTRACT We demonstrate an efficient method to compute the strong-gravitational-lensing deflection angle and magnification for any elliptical surface density profile. This method solves a numerical hurdle in lens modelling that has lacked a general solution for nearly three decades. The hurdle emerges because it is prohibitive to derive analytic expressions of the lensing quantities for most elliptical mass profiles. In our method, we first decompose an elliptical mass profile into concentric Gaussian components. We introduce an integral transform that provides us with a fast and accurate algorithm for this Gaussian decomposition. We derive analytic expressions of the lensing quantities for a Gaussian component. As a result, we can compute these quantities for the total mass profile by adding up the contributions from the individual components. This lensing analysis self-consistently completes the kinematic description in terms of Gaussian components presented by Cappellari (2008). Our method is general without extra computational burden unlike other methods currently in use.


2018 ◽  
Vol 620 ◽  
pp. A86 ◽  
Author(s):  
Jenny Wagner

Based on the standard gravitational lensing formalism with its effective, projected lensing potential in a given background cosmology, we investigated under which transformations of the source position and of the deflection angle the observable properties of the multiple images remain invariant. These observable properties are time delay differences, the relative image positions, relative shapes, and magnification ratios. As they only constrain local lens properties, we derive general, local invariance transformations in the areas covered by the multiple images. We show that the known global invariance transformations, for example, the mass-sheet transformation or the source position transformation, are contained in our invariance transformations, when they are restricted to the areas covered by the multiple images and when lens-model-based degeneracies are ignored, like the freedom to add or subtract masses in unconstrained regions without multiple images. Hence, we have identified the general class of invariance transformations that can occur, in particular in our model-independent local characterisation of strong gravitational lenses.


2001 ◽  
Vol 18 (2) ◽  
pp. 179-181 ◽  
Author(s):  
L. V. E. Koopmans ◽  
The CLASS Collaboration

AbstractOne of the main objectives of the Cosmic Lens All-Sky Survey (CLASS) collaboration has been to find gravitational lens (GL) systems at radio wavelengths that are suitable for the determination of time delays between image pairs. The survey is now near completion and at least 18 GL systems have been found. Here, I will discuss our efforts to measure time delays from several of these systems with the ultimate aim of constraining the Hubble Constant (H0). Thus far three CLASS GL systems (B0218+357, B1600+434 and B1608+656) have yielded measurements of time delays, from which values of H0 ≈ 60–70 km s−1 Mpc−1 have been estimated. Although most GL systems give similar values of H0, statistical and systematic uncertainties are still considerable. To reduce these uncertainties, I will mention two monitoring programs that we are undertaking to (re)measure time delays in 14 CLASS GL systems and address several important issues for the near future.


Sign in / Sign up

Export Citation Format

Share Document