scholarly journals Intermittent planet migration and the formation of multiple dust rings and gaps in protoplanetary discs

2020 ◽  
Vol 493 (4) ◽  
pp. 5892-5912 ◽  
Author(s):  
Gaylor Wafflard-Fernandez ◽  
Clément Baruteau

ABSTRACT A key challenge for protoplanetary discs and planet formation models is to be able to make a reliable connection between observed structures in the discs emission, like bright and dark rings or asymmetries, and the supposed existence of planets triggering these structures. The observation of N dark rings of emission is often interpreted as evidence for the presence of N planets which clear dust gaps around their orbit and form dust-trapping pressure maxima in the disc. The vast majority of the models that studied the impact of planets on the dynamics of dust and gas in a protoplanetary disc assumed planets on fixed orbits. Here, we go a different route and examine how the large-scale inward migration of a single planet structures the dust content of a massive disc. In many circumstances, the migration of a partial gap-opening planet with a mass comparable to Saturn is found to run away intermittently. By means of 2D gas and dust hydrodynamical simulations, we show that intermittent runaway migration can form multiple dust rings and gaps across the disc. Each time migration slows down, a pressure maximum forms beyond the planet gap that traps the large dust. Post-processing of our simulations results with 3D dust radiative transfer calculations confirms that intermittent runaway migration can lead to the formation of multiple sets of bright and dark rings of continuum emission in the (sub)millimeter beyond the planet location.

2020 ◽  
Vol 495 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Giovanni P Rosotti ◽  
Richard Teague ◽  
Cornelis Dullemond ◽  
Richard A Booth ◽  
Cathie J Clarke

ABSTRACT When imaged at high resolution, many protoplanetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper, we present a method to measure the dust–gas coupling α/St and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission line data cubes. As a proof of concept, we then apply the method to two discs with prominent substructure, HD 163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good (α/St ∼ 0.1). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the α turbulent parameter (α ∼ 10−2). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD 163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1 mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.


Author(s):  
Clément Baruteau ◽  
Gaylor Wafflard-Fernandez ◽  
Romane Le Gal ◽  
Florian Debras ◽  
Andrés Carmona ◽  
...  

Abstract Predicting how a young planet shapes the gas and dust emission of its parent disc is key to constraining the presence of unseen planets in protoplanetary disc observations. We investigate the case of a 2 Jupiter mass planet that becomes eccentric after migrating into a low-density gas cavity in its parent disc. Two-dimensional hydrodynamical simulations are performed and post-processed by three-dimensional radiative transfer calculations. In our disc model, the planet eccentricity reaches ∼0.25, which induces strong asymmetries in the gas density inside the cavity. These asymmetries are enhanced by photodissociation and form large-scale asymmetries in 12CO J=3→2 integrated intensity maps. They are shown to be detectable for an angular resolution and a noise level similar to those achieved in ALMA observations. Furthermore, the planet eccentricity renders the gas inside the cavity eccentric, which manifests as a narrowing, stretching and twisting of iso-velocity contours in velocity maps of 12CO J=3→2. The planet eccentricity does not, however, give rise to detectable signatures in 13CO and C18O J=3→2 inside the cavity because of low column densities. Outside the cavity, the gas maintains near-circular orbits, and the vertically extended optically thick CO emission displays a four-lobed pattern in integrated intensity maps for disc inclinations $\gtrsim$ 30○. The lack of large and small dust inside the cavity in our model further implies that synthetic images of the continuum emission in the sub-millimetre, and of polarized scattered light in the near-infrared, do not show significant differences when the planet is eccentric or still circular inside the cavity.


2018 ◽  
Vol 14 (S345) ◽  
pp. 355-357
Author(s):  
Ya-Ping Li

AbstractIn this work, we carry out two-fluid (gas+dust) hydrodynamical simulations on a large family of models in order to study the dust coagulation and the dust-gas dynamical processes in protoplanetary disks. Our theoretical effort is guided by the observational results of disks in nearby star forming regions at sub-millimeter and millimeter (mm) wavelengths. By a systematic comparison with the continuum emission at several mm bands from ALMA observations, we find that ringed structures are predicated in the unresolved faint disks for those with mm spectral indexes as low as about 2.0. Our parameter exploration can also be used to constrain the fragmentation velocity, one key parameter of the dust coagulation model, and some other disk parameters.


2018 ◽  
Vol 619 ◽  
pp. A161 ◽  
Author(s):  
P. Cazzoletti ◽  
E. F. van Dishoeck ◽  
P. Pinilla ◽  
M. Tazzari ◽  
S. Facchini ◽  
...  

Context. Spiral arms, rings and large scale asymmetries are structures observed in high resolution observations of protoplanetary disks, and it appears that some of the disks showing spiral arms in scattered light also show asymmetries in millimeter-sized dust. HD 135344B is one such disk. Planets are invoked as the origin of these structures, but no planet has been observed so far and upper limits are becoming more stringent with time. Aims. We want to investigate the nature of the asymmetric structure in the HD 135344B disk in order to understand the origin of the spirals and of the asymmetry seen in this disk. Ultimately, we aim to understand whether or not one or more planets are needed to explain such structures. Methods. We present new ALMA sub-0.1′′ resolution observations at optically thin wavelengths (λ = 2.8 and 1.9 mm) of the HD 135344B disk. The high spatial resolution allows us to unambiguously characterize the mm-dust morphology of the disk. The low optical depth of continuum emission probes the bulk of the dust content of the vortex. Moreover, we have combined the new observations with archival data at shorter wavelengths to perform a multi-wavelength analysis and to obtain information about the dust distribution and properties inside the observed asymmetry. Results. We resolve the asymmetric disk into a symmetric ring + asymmetric crescent, and observe that (1) the spectral index strongly decreases at the centre of the vortex, consistent with the presence of large grains; (2) for the first time, an azimuthal shift of the peak of the vortex with wavelength is observed; (3) the azimuthal width of the vortex decreases at longer wavelengths, as expected for dust traps. These features allow confirming the nature of the asymmetry as a vortex. Finally, under the assumption of optically thin emission, a lower limit to the total mass of the vortex is 0.3MJupiter. Considering the uncertainties involved in this estimate, it is possible that the actual mass of the vortex is higher and possibly within the required values (~4 MJupiter) to launch spiral arms similar to those observed in scattered light. If this is the case, then explaining the morphology does not require an outer planet.


2020 ◽  
Vol 498 (2) ◽  
pp. 1576-1592 ◽  
Author(s):  
Simon Pfeifer ◽  
Ian G McCarthy ◽  
Sam G Stafford ◽  
Shaun T Brown ◽  
Andreea S Font ◽  
...  

ABSTRACT In this work, we consider the impact of spatially uniform but time-varying dark energy (or ‘dynamical dark energy’, DDE) on large-scale structure in a spatially flat universe, using large cosmological hydrodynamical simulations that form part of the BAHAMAS project. As DDE changes the expansion history of the universe, it impacts the growth of structure. We explore variations in DDE that are constrained to be consistent with the cosmic microwave background. We find that DDE can affect the clustering of matter and haloes at the $\sim 10{{\ \rm per\ cent}}$ level (suppressing it for so-called freezing models, while enhancing it for thawing models), which should be distinguishable with upcoming large-scale structure surveys. DDE cosmologies can also enhance or suppress the halo mass function (with respect to Lambda cold dark matter) over a wide range of halo masses. The internal properties of haloes are minimally affected by changes in DDE, however. Finally, we show that the impact of baryons and associated feedback processes is largely independent of the change in cosmology and that these processes can be modelled separately to typically better than a few per cent accuracy.


2018 ◽  
Vol 610 ◽  
pp. A24 ◽  
Author(s):  
D. Fedele ◽  
M. Tazzari ◽  
R. Booth ◽  
L. Testi ◽  
C. J. Clarke ◽  
...  

This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet ~ 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10−4). Given the young age of the system (0.5–1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr.


2019 ◽  
Vol 631 ◽  
pp. A60 ◽  
Author(s):  
R. S. Beckmann ◽  
Y. Dubois ◽  
P. Guillard ◽  
P. Salome ◽  
V. Olivares ◽  
...  

Context. Extended filamentary Hα emission nebulae are a striking feature of nearby galaxy clusters but the formation mechanism of the filaments, and the processes which shape their morphology remain unclear. Aims. We conduct an investigation into the formation, evolution and destruction of dense gas in the centre of a simulated, Perseus-like, cluster under the influence of a spin-driven jet. The jet is powered by the supermassive black hole (SMBH) located in the cluster’s brightest cluster galaxy. We particularly study the role played by condensation of dense gas from the diffuse intracluster medium, and the impact of direct uplifting of existing dense gas by the jets, in determining the spatial distribution and kinematics of the dense gas. Methods. We present a hydrodynamical simulation of an idealised Perseus-like cluster using the adaptive mesh refinement code RAMSES. Our simulation includes a SMBH that self-consistently tracks its spin evolution via its local accretion, and in turn drives a large-scale jet whose direction is based on the black hole’s spin evolution. The simulation also includes a live dark matter (DM) halo, a SMBH free to move in the DM potential, star formation and stellar feedback. Results. We show that the formation and destruction of dense gas is closely linked to the SMBH’s feedback cycle, and that its morphology is highly variable throughout the simulation. While extended filamentary structures readily condense from the hot intra-cluster medium, they are easily shattered into an overly clumpy distribution of gas during their interaction with the jet driven outflows. Condensation occurs predominantly onto infalling gas located 5−15 kpc from the centre during quiescent phases of the central AGN, when the local ratio of the cooling time to free fall time falls below 20, i.e. when tcool/tff <  20. Conclusions. We find evidence for both condensation and uplifting of dense gas, but caution that purely hydrodynamical simulations struggle to effectively regulate the cluster cooling cycle and produce overly clumpy distributions of dense gas morphologies, compared to observation.


2020 ◽  
Vol 638 ◽  
pp. A116 ◽  
Author(s):  
Florian Kirchschlager ◽  
Gesa H.-M. Bertrang

Context. The understanding of (sub-)millimetre polarisation has made a leap forward since high-resolution imaging with the Atacama Large (sub-)Mm Array (ALMA) became available. Amongst other effects, self-scattering (i.e. the scattering of thermal dust emission on other grains) is thought to be the origin of millimetre polarisation. This opens the first window to a direct measurement of dust grain sizes in regions of optically thick continuum emission as it can be found in protoplanetary discs and star-forming regions. However, the newly derived values of grain sizes are usually around ~100 μm and thus one order of magnitude smaller than those obtained from more indirect measurements, as well as those expected from theory (~1 mm). Aims. We see the origin of this contradiction in the applied dust model of current self-scattering simulations: a perfect compact sphere. The aim of this study is to test our hypothesis by investigating the impact of non-spherical grain shapes on the self-scattering signal. Methods. We applied discrete dipole approximation simulations to investigate the influence of the grain shape on self-scattering polarisation in three scenarios: an unpolarised and polarised incoming wave under a fixed and a varying incident polarisation angle. Results. We find significant deviations of the resulting self-scattering polarisation when comparing non-spherical to spherical grains. In particular, tremendous deviations are found for the polarisation signal of grains when observed outside the Rayleigh regime, that is for >100 μm sized grains observed at the 870 μm wavelength. Self-scattering by oblate grains produces higher polarisation degrees compared to spheres, which challenges the interpretation of the origin of observed millimetre polarisation. A (nearly) perfect alignment of the non-spherical grains is required to account for the observed millimetre polarisation in protoplanetary discs. Furthermore, we find conditions under which the emerging scattering polarisation of non-spherical grains is flipped in orientation by 90°. Conclusions. These results show clearly that the perfect compact sphere is an oversimplified model, which has reached its limit. Our findings point towards a necessary re-evaluation of the dust grain sizes derived from (sub-)millimetre polarisation.


4OR ◽  
2020 ◽  
Author(s):  
Martina Cerulli ◽  
Marianna De Santis ◽  
Elisabeth Gaar ◽  
Angelika Wiegele

Abstract Alternating direction methods of multipliers (ADMMs) are popular approaches to handle large scale semidefinite programs that gained attention during the past decade. In this paper, we focus on solving doubly nonnegative programs (DNN), which are semidefinite programs where the elements of the matrix variable are constrained to be nonnegative. Starting from two algorithms already proposed in the literature on conic programming, we introduce two new ADMMs by employing a factorization of the dual variable. It is well known that first order methods are not suitable to compute high precision optimal solutions, however an optimal solution of moderate precision often suffices to get high quality lower bounds on the primal optimal objective function value. We present methods to obtain such bounds by either perturbing the dual objective function value or by constructing a dual feasible solution from a dual approximate optimal solution. Both procedures can be used as a post-processing phase in our ADMMs. Numerical results for DNNs that are relaxations of the stable set problem are presented. They show the impact of using the factorization of the dual variable in order to improve the progress towards the optimal solution within an iteration of the ADMM. This decreases the number of iterations as well as the CPU time to solve the DNN to a given precision. The experiments also demonstrate that within a computationally cheap post-processing, we can compute bounds that are close to the optimal value even if the DNN was solved to moderate precision only. This makes ADMMs applicable also within a branch-and-bound algorithm.


2020 ◽  
Vol 644 ◽  
pp. A170
Author(s):  
Joseph Kuruvilla ◽  
Nabila Aghanim ◽  
Ian G. McCarthy

We explored the impact of baryonic effects (namely stellar and active galactic nuclei feedback) on the moments of pairwise velocity using the Illustris-TNG, EAGLE, cosmo-OWLS, and BAHAMAS suites of cosmological hydrodynamical simulations. The assumption that the mean pairwise velocity of the gas component follows that of the dark matter is studied here at small separations, and we find that even at pair separations of 10–20 h−1Mpc, there is a 4–5% velocity bias. At smaller separations, it gets larger with varying strength depending on the sub-grid prescription. By isolating different physical processes, our findings suggest that the large-scale velocity bias is mainly driven by stellar rather than active galactic nuclei feedback. If unaccounted for, this velocity offset could possibly bias cosmological constraints from the kinetic Sunyaev-Zel’dovich effect in future cosmic microwave background (CMB) surveys. Furthermore, we examined how the first and the second moment of the pairwise velocity are affected by both the baryonic and the neutrino free-streaming effects for both the matter and gas components. For both moments, we were able to disentangle the effects of baryonic processes from those of massive neutrinos; and for pair separations below 20 h−1Mpc, we find that these moments of the pairwise velocity decrease with increasing neutrino mass. Our work thus sets out a way in which the pairwise velocity statistics can be utilised to constrain the summed mass of neutrinos from future CMB surveys and peculiar velocity surveys.


Sign in / Sign up

Export Citation Format

Share Document