scholarly journals An ALMA/NOEMA survey of the molecular gas properties of high-redshift star-forming galaxies

Author(s):  
Jack E Birkin ◽  
Axel Weiss ◽  
J L Wardlow ◽  
Ian Smail ◽  
A M Swinbank ◽  
...  

Abstract We have used ALMA and NOEMA to study the molecular gas reservoirs in 61 ALMA-identified submillimetre galaxies (SMGs) in the COSMOS, UDS and ECDFS fields. We detect 12CO (Jup = 2–5) emission lines in 50 sources, and [C i](3P1 − 3P0) emission in eight, at z = 1.2–4.8 and with a median redshift of 2.9 ± 0.2. By supplementing our data with literature sources we construct a statistical CO spectral line energy distribution and find that the 12CO line luminosities in SMGs peak at Jup ∼ 6, consistent with similar studies. We also test the correlations of the CO, [C i] and dust as tracers of the gas mass, finding the three to correlate well, although the CO and dust mass as estimated from the 3-mm continuum are preferable. We estimate that SMGs lie mostly on or just above the star-forming main sequence, with a median gas depletion timescale, tdep = Mgas/SFR, of 210 ± 40 Myr for our sample. Additionally, tdep declines with redshift across z ∼ 1–5, while the molecular gas fraction, μgas = Mgas/M*, increases across the same redshift range. Finally, we demonstrate that the distribution of total baryonic mass and dynamical line width, Mbaryon–σ, for our SMGs is consistent with that followed by early-type galaxies in the Coma cluster, providing strong support to the suggestion that SMGs are progenitors of massive local spheroidal galaxies. On the basis of this we suggest that the SMG populations above and below an 870-μm flux limit of S870 ∼ 5 mJy may correspond to the division between slow- and fast-rotators seen in local early-type galaxies.

2020 ◽  
Vol 495 (2) ◽  
pp. 2387-2407 ◽  
Author(s):  
C Spingola ◽  
J P McKean ◽  
S Vegetti ◽  
D Powell ◽  
M W Auger ◽  
...  

ABSTRACT We present a study of the stellar host galaxy, CO (1–0) molecular gas distribution and AGN emission on 50–500 pc-scales of the gravitationally lensed dust-obscured AGN MG J0751+2716 and JVAS B1938+666 at redshifts 3.200 and 2.059, respectively. By correcting for the lensing distortion using a grid-based lens modelling technique, we spatially locate the different emitting regions in the source plane for the first time. Both AGN host galaxies have 300–500 pc-scale size and surface brightness consistent with a bulge/pseudo-bulge, and 2 kpc-scale AGN radio jets that are embedded in extended molecular gas reservoirs that are 5–20 kpc in size. The CO (1–0) velocity fields show structures possibly associated with discs (elongated velocity gradients) and interacting objects (off-axis velocity components). There is evidence for a decrement in the CO (1–0) surface brightness at the location of the host galaxy, which may indicate radiative feedback from the AGN, or offset star formation. We find CO–H2 conversion factors of around αCO = 1.5 ± 0.5 (K km s−1 pc2)−1, molecular gas masses of >3 × 1010 M⊙, dynamical masses of ∼1011 M⊙, and gas fractions of around 60 per cent. The intrinsic CO line luminosities are comparable to those of unobscured AGN and dusty star-forming galaxies at similar redshifts, but the infrared luminosities are lower, suggesting that the targets are less efficient at forming stars. Therefore, they may belong to the AGN feedback phase predicted by galaxy formation models, because they are not efficiently forming stars considering their large amount of molecular gas.


2018 ◽  
Vol 620 ◽  
pp. A61 ◽  
Author(s):  
R. Cañameras ◽  
C. Yang ◽  
N. P. H. Nesvadba ◽  
A. Beelen ◽  
R. Kneissl ◽  
...  

We present an extensive CO emission-line survey of the Planck’s dusty Gravitationally Enhanced subMillimetre Sources, a small set of 11 strongly lensed dusty star-forming galaxies at z = 2–4 discovered with Planck and Herschel satellites, using EMIR on the IRAM 30-m telescope. We detected a total of 45 CO rotational lines from Jup = 3 to Jup = 11, and up to eight transitions per source, allowing a detailed analysis of the gas excitation and interstellar medium conditions within these extremely bright (μLFIR = 0.5 − 3.0 × 1014L⊙), vigorous starbursts. The peak of the CO spectral-line energy distributions (SLEDs) fall between Jup = 4 and Jup = 7 for nine out of 11 sources, in the same range as other lensed and unlensed submillimeter galaxies (SMGs) and the inner regions of local starbursts. We applied radiative transfer models using the large velocity gradient approach to infer the spatially-averaged molecular gas densities, nH2 ≃ 102.6 − 104.1 cm−3, and kinetic temperatures, Tk ≃ 30–1000 K. In five sources, we find evidence of two distinct gas phases with different properties and model their CO SLED with two excitation components. The warm (70–320 K) and dense gas reservoirs in these galaxies are highly excited, while the cooler (15–60 K) and more extended low-excitation components cover a range of gas densities. In two sources, the latter is associated with diffuse Milky Way-like gas phases of density nH2 ≃ 102.4 − 102.8 cm−3, which provides evidence that a significant fraction of the total gas masses of dusty starburst galaxies can be embedded in cool, low-density reservoirs. The delensed masses of the warm star-forming molecular gas range from 0.6to12 × 1010 M⊙. Finally, we show that the CO line luminosity ratios are consistent with those predicted by models of photon-dominated regions (PDRs) and disfavor scenarios of gas clouds irradiated by intense X-ray fields from active galactic nuclei. By combining CO, [C I] and [C II] line diagnostics, we obtain average PDR gas densities significantly higher than in normal star-forming galaxies at low-redshift, as well as far-ultraviolet radiation fields 102–104 times more intense than in the Milky Way. These spatially-averaged conditions are consistent with those in high-redshift SMGs and in a range of low-redshift environments, from the central regions of ultra-luminous infrared galaxies and bluer starbursts to Galactic giant molecular clouds.


2018 ◽  
Vol 620 ◽  
pp. A115 ◽  
Author(s):  
M. Béthermin ◽  
T. R. Greve ◽  
C. De Breuck ◽  
J. D. Vieira ◽  
M. Aravena ◽  
...  

The origin of the high star formation rates (SFR) observed in high-redshift dusty star-forming galaxies is still unknown. Large fractions of dense molecular gas might provide part of the explanation, but there are few observational constraints on the amount of dense gas in high-redshift systems dominated by star formation. In this paper, we present the results of our Atacama large millimeter array (ALMA) program targeting dense-gas tracers (HCN(5-4), HCO+(5-4), and HNC(5-4)) in five strongly lensed galaxies from the South Pole Telescope (SPT) submillimeter galaxy sample. We detected two of these lines (S/N > 5) in SPT-125-47 at z = 2.51 and tentatively detected all three (S/N ∼ 3) in SPT0551-50 at z = 3.16. Since a significant fraction of our target lines is not detected, we developed a statistical method to derive unbiased mean properties of our sample taking into account both detections and non-detections. On average, the HCN(5-4) and HCO+(5-4) luminosities of our sources are a factor of ∼1.7 fainter than expected, based on the local L′HCN(5-4) − LIR relation, but this offset corresponds to only ∼2σ if we consider sample variance. We find that both the HCO+/HCN and HNC/HCN flux ratios are compatible with unity. The first ratio is expected for photo-dominated regions (PDRs) while the second is consistent with PDRs or X-ray dominated regions (XDRs) and/or mid-infrared (IR) pumping of HNC. Our sources are at the high end of the local relation between the star formation efficiency, determined using the LIR/[CI] and LIR/CO ratios, and the dense-gas fraction, estimated using the HCN/[CI] and HCN/CO ratios. Finally, in SPT0125-47, which has the highest signal-to-noise ratio, we found that the velocity profiles of the lines tracing dense (HCN, HCO+) and lower-density (CO, [CI]) molecular gas are similar. In addition to these lines, we obtained one robust and one tentative detection of 13CO(4-3) and found an average I 12CO(4-3)/I13CO(4-3) flux ratio of 26.1−3.5+4.5, indicating a young but not pristine interstellar medium. We argue that the combination of large and slightly enriched gas reservoirs and high dense-gas fractions could explain the prodigious star formation in these systems.


2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


2017 ◽  
Vol 608 ◽  
pp. A144 ◽  
Author(s):  
C. Yang ◽  
A. Omont ◽  
A. Beelen ◽  
Y. Gao ◽  
P. van der Werf ◽  
...  

We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2–1) hereafter) line emission in a sample of redshift ~2–4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2–1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup ~ 5–7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 ~ 102.5–104.1 cm-3 and the kinetic temperature Tk  ~ 20–750 K. The gas thermal pressure Pth ranging from~105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 ~ 102.8–104.6 cm-3 and Tk  ~ 20–30 K, which is less correlated with star formation, and a high-excitation one (nH2 ~ 102.7–104.2 cm-3, Tk  ~ 60–400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2–1) lines follow the tight linear correlation between the luminosities of the [C I](2–1) and the CO(1–0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well. The total mass of the molecular gas reservoir, (1–30) × 1010M⊙, derived based on the CO(3–2) fluxes and αCO(1–0) = 0.8 M⊙ ( K km s-1 pc2)-1, suggests a typical molecular gas depletion time tdep ~ 20–100 Myr and a gas to dust mass ratio δGDR ~ 30–100 with ~20%–60% uncertainty for the SMGs. The ratio between CO line luminosity and the dust mass L′CO/Mdust appears to be slowly increasing with redshift for high-redshift SMGs, which need to be further confirmed by a more complete SMG sample at various redshifts. Finally, through comparing the linewidth of CO and H2O lines, we find that they agree well in almost all our SMGs, confirming that the emitting regions of the CO and H2O lines are co-spatially located.


2004 ◽  
Vol 614 (2) ◽  
pp. L97-L100 ◽  
Author(s):  
P. A. Vanden Bout ◽  
P. M. Solomon ◽  
R. J. Maddalena

2018 ◽  
Vol 482 (4) ◽  
pp. 4617-4629 ◽  
Author(s):  
A E Sansom ◽  
D H W Glass ◽  
G J Bendo ◽  
T A Davis ◽  
K Rowlands ◽  
...  

2019 ◽  
Vol 486 (1) ◽  
pp. 1404-1423 ◽  
Author(s):  
Timothy A Davis ◽  
Jenny E Greene ◽  
Chung-Pei Ma ◽  
John P Blakeslee ◽  
James M Dawson ◽  
...  

ABSTRACT In this paper, we study the molecular gas content of a representative sample of 67 of the most massive early-type galaxies (ETGs) in the local universe, drawn uniformly from the MASSIVE survey. We present new Institut de Radioastronomie Millimétrique (IRAM) 30-m telescope observations of 30 of these galaxies, allowing us to probe the molecular gas content of the entire sample to a fixed molecular-to-stellar mass fraction of 0.1 per cent. The total detection rate in this representative sample is 25$^{+5.9}_{-4.4}$ per cent, and by combining the MASSIVE and atlas3D molecular gas surveys, we find a joint detection rate of 22.4$^{+2.4}_{-2.1}$ per cent. This detection rate seems to be independent of galaxy mass, size, position on the Fundamental Plane, and local environment. We show here for the first time that true slow rotators can host molecular gas reservoirs, but the rate at which they do so is significantly lower than for fast rotators. Objects with a higher velocity dispersion at fixed mass (a higher kinematic bulge fraction) are less likely to have detectable molecular gas, and where gas does exist, have lower molecular gas fractions. In addition, satellite galaxies in dense environments have ≈0.6 dex lower molecular gas-to-stellar mass ratios than isolated objects. In order to interpret these results, we created a toy model, which we use to constrain the origin of the gas in these systems. We are able to derive an independent estimate of the gas-rich merger rate in the low-redshift universe. These gas-rich mergers appear to dominate the supply of gas to ETGs, but stellar mass loss, hot halo cooling, and transformation of spiral galaxies also play a secondary role.


2018 ◽  
Vol 615 ◽  
pp. A142 ◽  
Author(s):  
Paola Andreani ◽  
Edwin Retana-Montenegro ◽  
Zhi-Yu Zhang ◽  
Padelis Papadopoulos ◽  
Chentao Yang ◽  
...  

Context. Atomic carbon can be an efficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the power sources in the molecular gas of high-redshift galaxies. Aims. The recently installed SEPIA 5 receiver at the focus of the APEX telescope has opened up a new window at frequencies 159–211 GHz allowing the exploration of the atomic carbon in high-z galaxies, at previously inaccessible frequencies from the ground. We have targeted three gravitationally lensed galaxies at redshift of about 3 and conducted a comparative study of the observed high-J CO/CI ratios with well-studied nearby galaxies. Methods. Atomic carbon (CI(2–1)) was detected in one of the three targets and marginally in a second, while in all three targets the J = 7→6 CO line is detected. Results. The CO(7–6)/CI(2–1), CO(7–6)/CO(1–0) line ratios and the CO(7–6)/(far-IR continuum) luminosity ratio are compared to those of nearby objects. A large excitation status in the ISM of these high-z objects is seen, unless differential lensing unevenly boosts the CO line fluxes from the warm and dense gas more than the CO(1–0), CI(2–1), tracing a more widely distributed cold gas phase. We provide estimates of total molecular gas masses derived from the atomic carbon and the carbon monoxide CO(1–0), which within the uncertainties turn out to be equal.


2012 ◽  
Vol 8 (S292) ◽  
pp. 253-253
Author(s):  
Chelsea E. Sharon ◽  
Andrew J. Baker ◽  
Andrew I. Harris ◽  
Dieter Lutz ◽  
Linda J. Tacconi

AbstractPrevious studies of the molecular gas excitation in high-redshift galaxies have focused on galaxy-wide averages of CO line ratios. However, it is possible that these averages hide spatial variation on sub-galactic scales, disguising the true distribution and conditions of the molecular gas within star-forming galaxies. Even in the pre-ALMA era we have begun to see evidence for spatial variation of CO excitation in both rest-UV selected and submillimeter-selected galaxies at z > 2, aided both by the increased frequency coverage of the Jansky Very Large Array (allowing high-resolution observations of the CO(1–0) line, the best tracer for the coldest molecular gas) and by the benefits of gravitational lensing for spatially extended sources. We show new results for multiple high-redshift systems that reveal spatial and/or spectral variations in CO excitation, including an early-stage merger that has different conditions in its two components, thereby illustrating the need for high spatial and spectral resolution mapping in order to accurately characterize the molecular ISM in high-z galaxies.


Sign in / Sign up

Export Citation Format

Share Document