scholarly journals LARgE Survey – II. The dark matter haloes and the progenitors and descendants of ultramassive passive galaxies at cosmic noon

2020 ◽  
Vol 494 (1) ◽  
pp. 804-818 ◽  
Author(s):  
Gurpreet Kaur Cheema ◽  
Marcin Sawicki ◽  
Liz Arcila-Osejo ◽  
Anneya Golob ◽  
Thibaud Moutard ◽  
...  

ABSTRACT We use a 27.6 deg2 survey to measure the clustering of gzKs-selected quiescent galaxies at z ∼ 1.6, focusing on ultramassive quiescent galaxies. We find that z ∼ 1.6 Ultra-Massive Passively Evolving Galaxies (UMPEGs), which have Ks(AB) < 19.75 (stellar masses of M⋆$\gtrsim10^{11.4}\,\mathrm{ M}_{\odot }$ and mean <M⋆>  = 1011.5 M⊙), cluster more strongly than any other known galaxy population at high redshift. Comparing their correlation length, r0 = 29.77 ± 2.75h−1Mpc, with the clustering of dark matter (DM) haloes in the Millennium XXL N-body simulation suggests that these z ∼ 1.6 UMPEGs reside in DM haloes of mass Mh ∼ 1014.1h−1M⊙. Such very massive z ∼ 1.6 haloes are associated with the ancestors of z ∼ 0 massive galaxy clusters such as the Virgo and Coma clusters. Given their extreme stellar masses and lack of companions with comparable mass, we surmise that these UMPEGs could be the already-quenched central massive galaxies of their (proto)clusters. We conclude that with only a modest amount of further growth in their stellar mass, z ∼ 1.6 UMPEGs could be the progenitors of some of the massive central galaxies of present-day massive galaxy clusters observed to be already very massive and quiescent near the peak epoch of the cosmic star formation.

2010 ◽  
Vol 6 (S277) ◽  
pp. 158-165
Author(s):  
Claudia Maraston

AbstractStellar populations carry information about the formation of galaxies and their evolution up to the present epoch. A wealth of observational data are available nowadays, which are analysed with stellar population models in order to obtain key properties such as ages, star formation histories, stellar masses. Differences in the models and/or in the assumptions regarding the star formation history affect the derived properties as much as differences in the data. I shall review the interpretation of high-redshift galaxy data from a model perspective. While data quality dominates galaxy analysis at the highest possible redshifts (z > 5), population modelling effects play the major part at lower redshifts. In particular, I discuss the cases of both star-forming galaxies at the peak of the cosmic star formation history as well as passive galaxies at redshift below 1 that are often used as cosmological probes. Remarks on the bridge between low and high-z massive galaxies conclude the contribution.


2019 ◽  
Vol 491 (2) ◽  
pp. 2447-2459 ◽  
Author(s):  
Claes-Erik Rydberg ◽  
Daniel J Whalen ◽  
Matteo Maturi ◽  
Thomas Collett ◽  
Mauricio Carrasco ◽  
...  

ABSTRACT Supernovae (SNe) could be powerful probes of the properties of stars and galaxies at high redshifts in future surveys. Wide fields and longer exposure times are required to offset diminishing star formation rates and lower fluxes to detect useful number of events at high redshift. In principle, the Large Synoptic Survey Telescope (LSST) could discover large numbers of early SNe because of its wide fields but only at lower redshifts because of its AB mag limit of ∼24. However, gravitational lensing by galaxy clusters and massive galaxies could boost flux from ancient SNe and allow LSST to detect them at earlier times. Here, we calculate detection rates for lensed SNe at z ∼ 5–7 for LSST. We find that the LSST Wide Fast Deep survey could detect up to 120 lensed Population (Pop) I and II SNe but no lensed Pop III SNe. Deep-drilling programs in 10 deg2 fields could detect Pop I and II core-collapse SNe at AB magnitudes of 27–28 and 26, respectively.


2012 ◽  
Vol 8 (S292) ◽  
pp. 289-289 ◽  
Author(s):  
M. Pannella ◽  
D. Elbaz ◽  
E. Daddi

AbstractWe quantitatively explore in a unbiased way the evolution of dust attenuation up to z ≈ 4 as a function of galaxy properties. We have used one of the deepest datasets available at present, in the GOODS-N field, to select a star forming galaxy sample and robustly measure galaxy redshifts, star formation rates, stellar masses and UV restframe properties. Our main results can be summarized as follows: i) we confirm that galaxy stellar mass is a main driver of UV dust attenuation in star forming galaxies: more massive galaxies are more dust attenuated than less massive ones; ii) strikingly, we find that the correlation does not evolve with redshift: the amount of dust attenuation is the same at all cosmic epochs for a fixed stellar mass; iii) this finding explains why and how the SFR–AUV relation evolves with redshift: the same amount of star formation is less attenuated at higher redshift because it is hosted in less massive galaxies; iv) combining our finding with results from line emission surveys, we confirm that line reddening is larger than continuum reddening, at least up to z ≈ 1.5; v) given the redshift evolution of the mass-metallicity relation, we predict that star forming galaxies at a fixed metal content are more attenuated at high redshift. Finally, we explored the correlation between UV dust attenuation and the spectral slope: vi) the correlation is evolving with redshift with star forming galaxies at lower redshift having redder spectra than higher redshift ones for the same amount of dust attenuation.


2020 ◽  
Vol 492 (4) ◽  
pp. 4927-4944 ◽  
Author(s):  
M P Koprowski ◽  
K E K Coppin ◽  
J E Geach ◽  
U Dudzevičiūtė ◽  
Ian Smail ◽  
...  

ABSTRACT We analyse 870 $\mu$m Atacama Large Millimetre Array (ALMA) dust continuum detections of 41 canonically selected $z$ ≃ 3 Lyman-break galaxies (LBGs), as well as 209 ALMA-undetected LBGs, in follow-up of SCUBA-2 mapping of the UKIDSS Ultra Deep Survey (UDS) field. We find that our ALMA-bright LBGs lie significantly off the local IRX-beta relation and have relatively bluer rest-frame UV slopes (as parametrized by β), given their high values of the ‘infrared excess’ (IRX ≡ LIR/LUV), relative to the average ‘local’ IRX-β relation. We attribute this finding in part to the young ages of the underlying stellar populations but we find that the main reason behind the unusually blue UV slopes are the relatively shallow slopes of the corresponding dust attenuation curves. We show that, when stellar masses, M*, are being established via SED fitting, it is absolutely crucial to allow the attenuation curves to vary (rather than fixing it on Calzetti-like law), where we find that the inappropriate curves may underestimate the resulting stellar masses by a factor of ≃2–3× on average. In addition, we find these LBGs to have relatively high specific star-formation rates (sSFRs), dominated by the dust component, as quantified via the fraction of obscured star formation $(f_{\rm obs}\equiv {\rm SFR_{\rm IR}/{\rm SFR}_{\rm UV+IR}})$. We conclude that the ALMA-bright LBGs are, by selection, massive galaxies undergoing a burst of a star formation (large sSFRs, driven, for example, by secular or merger processes), with a likely geometrical disconnection of the dust and stars, responsible for producing shallow dust attenuation curves.


2020 ◽  
Vol 499 (1) ◽  
pp. 768-792 ◽  
Author(s):  
Elad Zinger ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Rainer Weinberger ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}\, \mathrm{M_\odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $\gtrsim 10^{10.5}\, \mathrm{M_\odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10\!-\!100\, \mathrm{Myr}$ to $1\!-\!10\, \mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleus (AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.


2020 ◽  
Vol 501 (2) ◽  
pp. 1852-1867
Author(s):  
Rebecca J Mayes ◽  
Michael J Drinkwater ◽  
Joel Pfeffer ◽  
Holger Baumgardt ◽  
Chengze Liu ◽  
...  

ABSTRACT We use the hydrodynamical EAGLE simulation to predict the numbers, masses, and radial distributions of tidally stripped galaxy nuclei in massive galaxy clusters, and compare these results to observations of ultracompact dwarf galaxies (UCDs) in the Virgo cluster. We trace the merger trees of galaxies in massive galaxy clusters back in time and determine the numbers and masses of stripped nuclei from galaxies disrupted in mergers. The spatial distribution of stripped nuclei in the simulations is consistent with those of UCDs surrounding massive galaxies in the Virgo cluster. Additionally, the numbers of stripped nuclei are consistent with the numbers of M > 107 M⊙ UCDs around individual galaxies and in the Virgo cluster as a whole. The mass distributions in this mass range are also consistent. We find that the numbers of stripped nuclei surrounding individual galaxies correlate better with the stellar or halo mass of individual galaxies than the total cluster mass. We conclude that most high mass (M > 107 M⊙) UCDs are likely stripped nuclei. It is difficult to draw reliable conclusions about low mass (M < 107 M⊙) UCDs because of observational selection effects. We additionally predict that a few hundred stripped nuclei below a mass of 2 × 106 M⊙ should exist in massive galaxies that will overlap in mass with the globular cluster population. Approximately 1–3 stripped nuclei in the process of forming also exist per massive galaxy.


2008 ◽  
Vol 4 (S255) ◽  
pp. 121-128
Author(s):  
Miroslava Dessauges-Zavadsky

AbstractWe review the current state of knowledge of damped Lyα systems (DLAs) selected in absorption on quasar sightlines. These objects are extremely useful to study the interstellar medium of high-redshift galaxies and the nucleosynthesis in the early Universe. The characteristics of this galaxy population has been investigated for years and slowly we are getting information on their puzzling nature. Imaging atz<1 shows that DLAs are associated with a mixing bag of galaxies with no especially large contribution from dwarf galaxies. Evidence for a mild evolution of the cosmic mean metallicity with time is observed. The star formation histories of these high-redshift galaxies begin to be accessible and indicate that DLAs tend to be young, gas-dominated galaxies with low star formation rates per unit area. Finally, indirect estimation of the DLA stellar masses from the mass-metallicity relations observed for emission-selected star-forming galaxies atz= 2−3 points to intermediate-mass galaxies withM*< 109M⊙.


2020 ◽  
Vol 638 ◽  
pp. L11 ◽  
Author(s):  
C. Tortora ◽  
N. R. Napolitano ◽  
M. Radovich ◽  
C. Spiniello ◽  
L. Hunt ◽  
...  

Relic galaxies are thought to be the progenitors of high-redshift red nuggets that for some reason missed the channels of size growth and evolved passively and undisturbed since the first star formation burst (at z >  2). These local ultracompact old galaxies are unique laboratories for studying the star formation processes at high redshift and thus the early stage of galaxy formation scenarios. Counterintuitively, theoretical and observational studies indicate that relics are more common in denser environments, where merging events predominate. To verify this scenario, we compared the number counts of a sample of ultracompact massive galaxies (UCMGS) selected within the third data release of the Kilo Degree Survey, that is, systems with sizes Re <  1.5 kpc and stellar masses M⋆ >  8 × 1010 M⊙, with the number counts of galaxies with the same masses but normal sizes in field and cluster environments. Based on their optical and near-infrared colors, these UCMGS are likely to be mainly old, and hence representative of the relic population. We find that both UCMGS and normal-size galaxies are more abundant in clusters and their relative fraction depends only mildly on the global environment, with denser environments penalizing the survival of relics. Hence, UCMGS (and likely relics overall) are not special because of the environment effect on their nurture, but rather they are just a product of the stochasticity of the merging processes regardless of the global environment in which they live.


2014 ◽  
Vol 10 (S309) ◽  
pp. 269-272
Author(s):  
Tobias Goerdt

AbstractCold gas streaming along the dark-matter filaments of the cosmic web is predicted to be the major provider of resources for disc buildup and star formation in massive galaxies in the early universe. We use hydrodynamical simulations to study to what extent these cold streams are traceable in the extended circum-galactic environment of galaxies via Ly alpha emission, Ly alpha absorption and selected low ionisation metal absorption lines. We predict the strength of the absorption signal produced by the streams and find that it is consistent with observations in high redshift galaxies. The characteristics of the Ly alpha emission of our simulated galaxies are similar in luminosity, morphology and extent to the observed Ly alpha blobs, with distinct kinematic features. We analyse the characteristics of the cold streams in simulations and present scaling relations for the amount of infall, its velocity, distribution and its clumpiness and compare our findings with observations.


2019 ◽  
Vol 625 ◽  
pp. A96 ◽  
Author(s):  
Rüdiger Kneissl ◽  
Maria del Carmen Polletta ◽  
Clement Martinache ◽  
Ryley Hill ◽  
Benjamin Clarenc ◽  
...  

Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of more than 2000 high-z candidate structures has been found using Planck’s all-sky submillimetre maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. As a next step, we need to resolve and characterise the individual galaxies giving rise to the emission seen by Planck and Herschel, and to find out whether they constitute the progenitors of present-day, massive galaxy clusters. Thus, we targeted the eight brightest Herschel-SPIRE sources in the centre of the Planck peak PLCK G073.4−57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC, CFHT-WIRCam in the J and Ks bands, and JCMT’s SCUBA-2 instrument. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy within the 2.4 arcmin2 ALMA pointings, corresponding to an ALMA source density 8–30 times higher than average background estimates and larger than seen in typical “proto-cluster” fields. We were able to match all but one of the ALMA sources to a near infrared (NIR) counterpart. The four most significant SCUBA-2 sources are not included in the ALMA pointings, but we find an 8σ stacking detection of the ALMA sources in the SCUBA-2 map at 850 μm. We derive photometric redshifts, infrared (IR) luminosities, star-formation rates (SFRs), stellar masses (ℳ), dust temperatures, and dust masses for all of the ALMA galaxies. Photometric redshifts identify two groups each of five sources, concentrated around z  ≃  1.5 and 2.4. The two groups show two “red sequences”, that is similar near-IR [3.6]  −  [4.5] colours and different J  −  Ks colours. The majority of the ALMA-detected galaxies are on the SFR versus ℳ main sequence (MS), and half of the sample is more massive than the characteristic ℳ* at the corresponding redshift. We find that the z  ≃  1.5 group has total SFR = 840−100+120 M⊙ yr−1 and ℳ = 5.8−2.4+1.7 × 1011 M⊙, and that the z  ≃  2.4 group has SFR = 1020−170+310 M⊙ yr−1 and ℳ = 4.2−2.1+1.5 × 1011 M⊙, but the latter group is more scattered in stellar mass and around the MS. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z  =  1.54. We performed an analysis of star-formation efficiencies (SFEs) and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1 <  z <  3 cluster and proto-cluster members, and observed trends in both quantities with respect to stellar masses and in comparison to field galaxies.


Sign in / Sign up

Export Citation Format

Share Document