Supersolar metallicity in G0–G3 main-sequence stars with V < 15. II. An extension of the sample

2020 ◽  
Vol 493 (4) ◽  
pp. 5807-5815
Author(s):  
M Chávez ◽  
C Tapia-Schiavon ◽  
E Bertone ◽  
R López-Valdivia

ABSTRACT We present the spectroscopic analysis at intermediate resolution of a new sample of 146 Sun-like stars (of spectral types G0–G3 and luminosity class V), which complements the data set of 233 targets previously investigated. Aimed at identifying objects with supersolar metallicity, we conducted observations at the Observatorio Astrofísico Guillermo Haro and derived the basic stellar atmospheric parameters, namely the effective temperature, surface gravity, and global metallicity, based on a set of absorption spectroscopic indices in the wavelength region 3800–4800 Å. The newly derived set of parameters is in good agreement with previous determinations collected from sources in the literature. Considering the full sample of our investigation (379 stars), we also compared the effective temperatures of stars in common (354 objects) with Gaia DR2 for which temperatures are available, and found that, on average, our values are about 100 K higher. We show that most of the largest temperature discrepancies can plausibly be ascribed to interstellar extinction effects on Gaia’s photometry. Finally, within the working sample we found four more stars that present supermetallicity, one of which was previously reported in the literature.

1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


2003 ◽  
Vol 12 (4) ◽  
Author(s):  
Jens Knude ◽  
Claus Fabricius

AbstractWe present a new color index vs. absolute magnitude calibration of 2MASS JHK photometry. For the A0 to ~G5 and M segments of the main sequence information on the amount of interstellar extinction and its location in space may be obtained.


2020 ◽  
Vol 499 (1) ◽  
pp. L111-L115
Author(s):  
L Kaltenegger ◽  
J Pepper

ABSTRACT Transit observations have found the majority of exoplanets to date. Also spectroscopic observations of transits and eclipses are the most commonly used tool to characterize exoplanet atmospheres and will be used in the search for life. However, an exoplanet’s orbit must be aligned with our line of sight to observe a transit. Here, we ask, from which stellar vantage points would a distant observer be able to search for life on Earth in the same way? We use the TESS Input Catalog and data from Gaia DR2 to identify the closest stars that could see Earth as a transiting exoplanet: We identify 1004 main-sequence stars within 100 parsecs, of which 508 guarantee a minimum 10-h long observation of Earth’s transit. Our star list consists of about 77 percent M-type, 12 percent K-type, 6 percent G-type, 4 percent F-type stars, and 1 percent A-type stars close to the ecliptic. SETI searches like the Breakthrough Listen Initiative are already focusing on this part of the sky. Our catalogue now provides a target list for this search. As part of the extended mission, NASA’s TESS will also search for transiting planets in the ecliptic to find planets that could already have found life on our transiting Earth .


2020 ◽  
Vol 493 (2) ◽  
pp. 2659-2675
Author(s):  
Derya Sürgit ◽  
Ahmet Erdem ◽  
Chris A Engelbrecht ◽  
Fred Marang

ABSTRACT We present combined photometric and spectroscopic analyses of the three southern eclipsing binary stars: DQ Car, BK Ind, and V4396 Sgr. Radial velocity curves of these three systems were obtained at the South African Astronomical Observatory, and their light curves from the available data bases and surveys were used for the analysis. 75 new times of minima for these three eclipsing binaries were derived, and their ephemerides were updated. Only the O–C diagram of DQ Car indicates a cyclical variation, which was interpreted in terms of the light-time effect due to a third body in the system. Our final models describe these three systems as Algol-like binary stars with detached configurations. The masses and radii were found to be M1 = 1.86(±0.17) M⊙, R1 = 1.63(±0.06) R⊙ and M2 = 1.74(±0.17) M⊙, R2 = 1.52(±0.07) R⊙ for the primary and secondary components of DQ Car; M1 = 1.16(±0.05) M⊙, R1 = 1.33(±0.03) R⊙ and M2 = 0.98(±0.04) M⊙, R2 = 1.00(±0.03) R⊙ for BK Ind; and M1 = 3.14(±0.22) M⊙, R1 = 3.00(±0.09) R⊙ and M2 = 3.13(±0.24) M⊙, R2 = 2.40(±0.08) R⊙ for V4396 Sgr, respectively. The distances to DQ Car, BK Ind, and V4396 Sgr were derived to be 701(±50), 285(±20), and 414(±30) pc from the distance modulus formula, taking into account interstellar extinction. The evolutionary status of these three systems was also studied. It has been found that the components of DQ Car are very young stars at the age of ∼25 Myr and those of BK Ind and V4396 Sgr are evolved main-sequence stars at the ages of ∼2.69 Gyr and ∼204 Myr, respectively.


1985 ◽  
Vol 111 ◽  
pp. 523-524
Author(s):  
L. Pastori ◽  
G. Malaspina

Angular diameters of 593 B5-F5 main sequence stars listed in the “Catalogue of apparent diameters and absolute radii of stars” (CADARS; Fracassini et al. 1981) have been analysed in order to improve the precision of the visual surface brightness Sv. The new relations between this quantity and the color index (B-V)o turn out to be in good agreement with those found with the interferometric method (Barnes et al. 1978). Moreover, the results suggest that surface gravity effects may bias the Sv-(B-V)o relations.


2020 ◽  
Vol 495 (4) ◽  
pp. 4098-4112 ◽  
Author(s):  
Johanna Coronado ◽  
Hans-Walter Rix ◽  
Wilma H Trick ◽  
Kareem El-Badry ◽  
Jan Rybizki ◽  
...  

ABSTRACT Stars born at the same time in the same place should have formed from gas of the same element composition. But most stars subsequently disperse from their birth siblings, in orbit and orbital phase, becoming ‘field stars’. Here, we explore and provide direct observational evidence for this process in the Milky Way disc, by quantifying the probability that orbit-similarity among stars implies indistinguishable metallicity. We define the orbit similarity among stars through their distance in action-angle space, Δ(J, θ), and their abundance similarity simply by Δ[Fe/H]. Analysing a sample of main-sequence stars from Gaia DR2 and LAMOST, we find an excess of pairs with the same metallicity (Δ[Fe/H] &lt; 0.1) that extends to remarkably large separations in Δ(J, θ) that correspond to nearly 1 kpc distances. We assess the significance of this effect through a mock sample, drawn from a smooth and phase-mixed orbit distribution. Through grouping such star pairs into associations with a friend-of-friends algorithm linked by Δ(J,θ), we find 100s of mono-abundance groups with ≥3 (to ≳20) members; these groups – some clusters, some spread across the sky – are over an order-of-magnitude more abundant than expected for a smooth phase-space distribution, suggesting that we are witnessing the ‘dissolution’ of stellar birth associations into the field.


1979 ◽  
Vol 83 ◽  
pp. 103-108
Author(s):  
A. B. Underhill ◽  
L. Divan ◽  
V. Doazan ◽  
M.L. Prévot-Burnichon

Angular diameters have been estimated for 18 O and 142 B stars using absolute intermediate-band photometry in the near infrared and they have been combined with integrated fluxes to yield effective temperatures. The effective temperatures of the O stars lie in the range 30000 K to about 47000 K. For a given subtype, the luminosity class I stars have lower effective temperatures than the main-sequence stars by about 1000 K. The absorption-line spectral types of the supergiants of types O and B reflect electron temperatures which are higher than can be maintained by the integrated flux which flows through the stellar atmosphere. Distances have been estimated for all the stars and linear diameters found. The average radius for an 08 to 09.5 supergiant is about 23.3 R⊙; the radii for luminosity class III and Class V O stars lie in the range 6.8 to 10.7⊙ R.


2019 ◽  
Vol 488 (1) ◽  
pp. 1090-1110 ◽  
Author(s):  
C A H Condori ◽  
M Borges Fernandes ◽  
M Kraus ◽  
D Panoglou ◽  
C A Guerrero

ABSTRACT We investigated 12 unclassified B[e] stars or candidates, 8 from the Galaxy, 2 from the Large Magellanic Cloud (LMC), and 2 from the Small Magellanic Cloud (SMC). Based on the analysis of high-resolution spectroscopic (FEROS) and photometric data, we confirmed the presence of the B[e] phenomenon for all objects of our sample, except for one (IRAS 07455-3143). We derived their effective temperature, spectral type, luminosity class, interstellar extinction and, using the distances from Gaia DR2, we obtained their bolometric magnitude, luminosity, and radius. Modelling of the forbidden lines present in the FEROS spectra revealed information about the kinematics and geometry of the circumstellar medium of these objects. In addition, we analysed the light curves of four stars, finding their most probable periods. The evolutionary stage of 11 stars of our sample is suggested from their position on the HR diagram, taking into account evolutionary tracks of stars with solar, LMC, and SMC metallicities. As results, we identified B and B[e] supergiants, B[e] stars probably at the main sequence or close to its end, post-AGB and HAeB[e] candidates, and A[e] stars in the main sequence or in the pre-main sequence. However, our most remarkable results are the identification of the third A[e] supergiant (ARDB 54, the first one in the LMC), and of an ‘LBV impostor’ in the SMC (LHA 115-N82).


Sign in / Sign up

Export Citation Format

Share Document