scholarly journals Probability of simultaneous parallax detection for free-floating planet microlensing events near Galactic Centre

2020 ◽  
Vol 494 (3) ◽  
pp. 3235-3252 ◽  
Author(s):  
M Ban

ABSTRACT The event rate and the efficiency of mass estimation for free-floating planet (FFP) microlensing events were determined from the simulation of the simultaneous parallax observations by Euclid, WFIRST, and LSST. The stellar population from the Besançon Galactic model toward (l, b) = (1°, −1.°75) was applied to our 3D microlensing model, and 30 000 parallax observations were simulated for each following FFP lens masses: Jupiter mass, Neptune mass, and Earth mass assuming the population of one FFP per star. The interstellar dust, unresolved stellar background, nearby star blending was modelled. A signal-to-noise limit considering a finite source effect determined the event detectability. The Euclid–WFIRST combination yielded 30.7 Jupiter-mass FFPs during two 30-d periods per year in parallax observation. The parallax event rate decreases to 3.9 FFPs for Earth-mass planets. The mass estimation from the parallax light curve allowed recovery of FFP masses to within a factor of 2 for 20–26 per cent of cases. The Euclid–LSST combination yielded 34.5 Jupiter-mass FFPs down to 0.5 Earth-mass FFPs for the same periods and the mass is recovered to within a factor of 2 in 20–40 per cent of cases. The event rate will be normalized by the unknown FFP abundance to recover the number of expected detections.

2020 ◽  
Vol 493 (1) ◽  
pp. 1109-1119
Author(s):  
B Günay ◽  
M G Burton ◽  
M Afşar ◽  
T W Schmidt

ABSTRACT In the interstellar medium, the cosmic elemental carbon abundance includes the total carbon in both gas and solid phases. The aim of the study was to trial a new method for measuring the amount and distribution of aliphatic carbon within interstellar dust over wide fields of view of our Galaxy. This method is based on the measurement of the 3.4-$\mu$m absorption feature from aliphatic carbonaceous matter. This can readily be achieved for single sources using infrared (IR) spectrometers. However, making such measurements over wide fields requires an imaging IR camera, equipped with narrow-band filters that are able to sample the spectrum. While this cannot produce as good a determination of the spectra, the technique can be applied to potentially tens to hundreds of sources simultaneously, over the field of view of the camera. We examined this method for a field in the centre of the Galaxy, and produced a map showing the variation of 3.4-$\mu$m optical depth across it.


2012 ◽  
Vol 10 (H16) ◽  
pp. 127-127
Author(s):  
S. I. Loubser ◽  
P. Sánchez-Blázquez

AbstractThis study is part of a series devoted to the investigation of a large sample of brightest cluster galaxies (BCGs), their properties and the relationships between these and the properties of the host clusters. In this paper, we compare the stellar population properties derived from high signal-to-noise, optical long-slit spectra with the GALEX ultraviolet (UV) colour measurements for 36 nearby BCGs to understand the diversity in the most rapidly evolving feature in old stellar systems, the UV-upturn. We investigate: (1) the possible differences between the UV-upturn of BCGs and those of a control sample of ordinary ellipticals in the same mass range, as well as possible correlations between the UV-upturn and other general properties of the galaxies; (2) possible correlations between the UV-upturn and the properties of the host clusters; (3) recently proposed scenarios where helium-sedimentation in the cluster centre can produce an enhanced UV-upturn. We find systematic differences between the UV-colours of BCGs and ordinary ellipticals, but we do not find correlations between these colours and the properties of the host clusters. Furthermore, the observations do not support the predictions made by the helium-sedimentation model as an enhancer of the UV-upturn.


2020 ◽  
Vol 641 ◽  
pp. A149
Author(s):  
D. Rogantini ◽  
E. Costantini ◽  
S. T. Zeegers ◽  
M. Mehdipour ◽  
I. Psaradaki ◽  
...  

Context. The dense Galactic environment is a large reservoir of interstellar dust. Therefore, this region represents a perfect laboratory to study the properties of cosmic dust grains. X-rays are the most direct way to detect the interaction of light with dust present in these dense environments. Aims. The interaction between the radiation and the interstellar matter imprints specific absorption features on the X-ray spectrum. We study them with the aim of defining the chemical composition, the crystallinity, and structure of the dust grains that populate the inner regions of the Galaxy. Methods. We investigated the magnesium and the silicon K-edges detected in the Chandra /HETG spectra of eight bright X-ray binaries, distributed in the neighbourhood of the Galactic centre. We modelled the two spectral features using accurate extinction cross-sections of silicates, which we measured at the synchrotron facility Soleil, France. Results. Near the Galactic centre, magnesium and silicon show abundances similar to the solar ones and they are highly depleted from the gas phase (δMg > 0.90 and δSi > 0.96). We find that amorphous olivine with a composition of MgFeSiO4 is the most representative compound along all lines of sight according to our fits. The contribution of Mg-rich silicates and quartz is low (less than 10%). On average we observe a percentage of crystalline dust equal to 11%. For the extragalactic source LMC X-1, we find a preference for forsterite, a magnesium-rich olivine. Along this line of sight we also observe an under-abundance of silicon ASi∕ALMC = 0.5 ± 0.2.


2018 ◽  
Vol 620 ◽  
pp. A83 ◽  
Author(s):  
F. Nogueras-Lara ◽  
R. Schödel ◽  
H. Dong ◽  
F. Najarro ◽  
A. T. Gallego-Calvente ◽  
...  

Context. The study of the inner region of the Milky Way bulge is hampered by high interstellar extinction and extreme source crowding. Sensitive high angular resolution near-infrared imaging is needed to study stellar populations and their characteristics in such a dense and complex environment. Aims. We aim at investigating the stellar population in the innermost Galactic bulge, to study the star formation history in this region of the Galaxy. Methods. We used the 0.2″ angular resolution JHKs data from the GALACTICNUCLEUS survey to study the stellar population within two 8.0′×3.4′ fields, about 0.6° and 0.4° to the Galactic north of the Milky Way centre and to compare it with the one in the immediate surroundings of Sagittarius A*. We also characterise the absolute extinction and the extinction curve of the two fields. Results. The average interstellar extinction to the outer and the inner field is AKs ∼ 1.20 ± 0.08 mag and ∼1.48 ± 0.10 mag, respectively. We present Ks luminosity functions that are complete down to at least two magnitudes below the red clump (RC). We detect a feature in the luminosity functions that is fainter than the RC by 0.80 ± 0.03 and 0.79 ± 0.02 mag, respectively, in the Ks band. It runs parallel to the reddening vector. We identify the feature as the red giant branch bump. Fitting α-enhanced BaSTI luminosity functions to our data, we find that a single old stellar population of ∼12.8 ± 0.6 Gyr and Z = 0.040 ± 0.003 provides the best fit. Our findings thus show that the stellar population in the innermost bulge is old, similar to the one at larger distances from the Galactic plane, and that its metallicity is about twice solar at distances as short as about 60 pc from the centre of the Milky Way, similar to what is observed at about 500 pc from the Galactic Centre. Comparing the obtained metallicity with previous known values at larger latitudes (|b| > 2°), our results favour a flattening of the gradient at |b| < 2°. As a secondary result we obtain that the extinction index in the studied regions agrees within the uncertainties with our previous value of α = 2.30 ± 0.08 that was derived for the very Galactic centre.


2019 ◽  
Vol 490 (4) ◽  
pp. 5820-5831 ◽  
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Hagai B Perets ◽  
Alessia Gualandris ◽  
Nadine Neumayer ◽  
Anna C Sippel

ABSTRACT Studies of the Galactic Centre suggest that in situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed young stellar disc (2–7 Myr) in the central 0.5 pc of the Galaxy. This result suggests that star formation in galactic nuclei may occur close to the SMBH and produce initially flattened stellar discs. Here, we explore the possible build-up and evolution of nuclear stellar clusters near SMBHs through in situ star formation producing stellar discs similar to those observed in the Galactic Centre and other nuclei. We use N-body simulations to model the evolution of multiple young stellar discs and explore the potential observable signatures imprinted by such processes. Each of the five simulated discs is evolved for 100 Myr before the next one is introduced in the system. We find that populations born at different epochs show different morphologies and kinematics. Older and presumably more metal-poor populations are more relaxed and extended, while younger populations show a larger amount of rotation and flattening. We conclude that star formation in central discs can reproduce the observed properties of multiple stellar populations in galactic nuclei differing in age, metallicity, and kinematic properties.


1993 ◽  
pp. 329-330
Author(s):  
A. Ruelas-Mayorga ◽  
P. Teague

2017 ◽  
Vol 609 ◽  
pp. A22 ◽  
Author(s):  
D. Rogantini ◽  
E. Costantini ◽  
S. T. Zeegers ◽  
C. P. de Vries ◽  
W. Bras ◽  
...  

Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.


2018 ◽  
Vol 168 ◽  
pp. 05002
Author(s):  
Hisaaki Shinkai

Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up, we are able to detect the ring-down gravitational wave of a BH with the mass M < 2 × 103M⊙. This enables us to check the sequence of BH mergers to SMBHs via intermediate-mass BHs. We estimate the number density of galaxies from the halo formation model and estimate the number of BH mergers from the giant molecular cloud model assuming hierarchical growth of merged cores. At the designed KAGRA (and/or advanced LIGO/VIRGO), we find that the BH merger of its total mass M ∼ 60M⊙ is at the peak of the expected mass distribution. With its signal-to-noise ratio ρ = 10(30), we estimate the event rate R ∼ 200(20) per year in the most optimistic case, and we also find that BH mergers in the range M < 150M⊙ are R > 1 per year for ρ = 10. Thus, if we observe a BH with more than 100M⊙ in future gravitational-wave observations, our model naturally explains its source.


2008 ◽  
Vol 492 (2) ◽  
pp. 419-439 ◽  
Author(s):  
S. Trippe ◽  
S. Gillessen ◽  
O. E. Gerhard ◽  
H. Bartko ◽  
T. K. Fritz ◽  
...  

2020 ◽  
Vol 494 (3) ◽  
pp. 4149-4167
Author(s):  
Anuj Gupta ◽  
Sandeep Sahijpal

ABSTRACT Interstellar dust is a significant component of matter in the galaxies. The dust owns its origin and reprocessing in a wide range of astrophysical environments. In order to understand the origin and evolution of the distinct types of interstellar dust grains, we have attempted a comprehensive correlated study of the thermodynamics condensation of dust grains in distinct stellar environments with the Galactic chemical evolution of the Milky Way Galaxy. The Galaxy is evolved in terms of elemental evolution resulting from stellar nucleosynthetic contributions of several generations of stars. Based on the elemental composition of the evolving Galaxy, the relative abundances of the major constituents of interstellar dust are assessed. The major aim is to redistribute the various condensable elements at any epoch during the evolution of the Galaxy into various grain constituents and understand their abundance evolution based on a mass-balance formalism. We also performed thermodynamical equilibrium condensation calculations to understand the stellar origin of various grain constituents that could carry the isotopic signatures of the various stellar nucleosynthetic sources. This is perhaps a novel attempt to estimate the bulk dust mass budget in the evolving Galaxy. The normalized mass of the Galactic dust is predicted to decrease with the increase in distance from the Galactic centre. It increases over time. The supernovae SNe Ia are predicted as the most prominent sources of Fe-dust mass, the supernova SN II+Ib/c produces oxides- and silicate-dust mass, and the AGB stars contribute to carbonaceous dust mass.


Sign in / Sign up

Export Citation Format

Share Document