scholarly journals Stellar substructures in the periphery of the magellanic clouds with the VISTA hemisphere survey from the red clump and other tracers

Author(s):  
Dalal El Youssoufi ◽  
Maria-Rosa L Cioni ◽  
Cameron P M Bell ◽  
Richard de Grijs ◽  
Martin A T Groenewegen ◽  
...  

Abstract We study the morphology of the stellar periphery of the Magellanic Clouds in search of substructure using near–infrared imaging data from the VISTA Hemisphere Survey (VHS). Based on the selection of different stellar populations using the (J − Ks, Ks) colour–magnitude diagram, we confirm the presence of substructures related to the interaction history of the Clouds and find new substructures on the eastern side of the LMC disc which may be owing to the influence of the Milky Way, and on the northern side of the SMC, which is probably associated to the ellipsoidal structure of the galaxy. We also study the luminosity function of red clump stars in the SMC and confirm the presence of a bi–modal distance distribution, in the form of a foreground population. We find that this bi–modality is still detectable in the eastern regions of the galaxy out to a 10○ distance from its centre. Additionally, a background structure is detected in the North between 7○ and 10○ from the centre which might belong to the Counter Bridge, and a foreground structure is detected in the South between 6○ and 8○ from the centre which might be linked to the Old Bridge.

2018 ◽  
Vol 14 (S344) ◽  
pp. 66-69
Author(s):  
Dalal El Youssoufi ◽  
Maria-Rosa L. Cioni ◽  
Cameron P. M. Bell ◽  
Stefano Rubele ◽  
Florian Niederhofer ◽  
...  

AbstractThe Magellanic Clouds are nearby dwarf irregular galaxies that represent a unique laboratory for studying galaxy interactions. Their morphology and dynamics have been heavily influenced by their mutual interactions as well as with their interaction(s) with the Milky Way. We use the VISTA near-infrared YJKs survey of the Magellanic Clouds system (VMC) in combination with stellar partial models of the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC) and the Milky Way to investigate the spatial distribution of stellar populations of different ages across the Magellanic Clouds. In this contribution, we present the results of these studies that allow us to trace substructures possibly related to the interaction history of the Magellanic Clouds.


2010 ◽  
Vol 6 (S277) ◽  
pp. 13-16
Author(s):  
T. J. Davidge

AbstractNear-infrared images obtained with WIRCam are used to investigate the recent history of the starburst galaxy NGC 253. The distribution of stars in the disk is lopsided, with the projected density of young and intermediate age stars in the north east portion of the disk higher than on the opposite side of the galaxy. Bright AGB stars are also detected out to 15 kpc above the disk plane. Comparisons with models suggest that the extraplanar stars formed over a broad range of ages, suggesting that the disk of NGC 253 was disrupted by a tidal encounter.


2006 ◽  
Vol 2 (S235) ◽  
pp. 206-206
Author(s):  
Susanne Hüttemeister ◽  
Eva Manthey

AbstractInteraction and merging are the two most important driving forces of galaxy evolution. In contrast to the well studied major mergers of two large gas-rich disk galaxies, which may lead to Ultraluminous Infrared Galaxies (ULIRGs, LFIR>1012 L⊙), mergers between galaxies of unequal mass or a spiral and an elliptical (S+E mergers) are still poorly understood. These moderate luminosity mergers typically have LFIR > 1011 L⊙. Here, we present the results of our multiwavelength study of a sample of such kind of mergers, including interferometric HI and single-dish CO observations, optical and near-infrared imaging as well as optical spectroscopy.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


1994 ◽  
Vol 158 ◽  
pp. 379-381
Author(s):  
A. Eckart ◽  
R. Genzel ◽  
R. Hofmann ◽  
B.J. Sams ◽  
L.E. Tacconi-Garman

We present deep 1.6 and 2.2 μm images of the central parsec of the Galaxy at a resolution of 0.15″. Most of the flux in earlier seeing limited images comes from about 340 unresolved stellar sources with K≤14. The IRS 16 and 13 complexes are resolved into about two dozen and half a dozen sources, a number of which are probably luminous hot stars. We confirm the presence of a blue near infrared object (K≈13) at the position of the compact radio source Sgr A∗. The spatial centroid of the source number distribution is consistent with the position of Sgr A∗ but not with a position in the IRS 16 complex. The stellar surface density in the central 10″ is very well fitted by an isothermal cluster model with a well defined core radius. The derived core radius of all 340 sources is 0.15±0.05 pc. The central stellar density is a few times 107 M⊙ pc−3. Buildup of massive stars by merging of lower mass stars and collisional disruption of giant atmospheres are very probable processes in the central 0.2 pc.


2020 ◽  
Vol 637 ◽  
pp. A52 ◽  
Author(s):  
R. Nanni ◽  
R. Gilli ◽  
C. Vignali ◽  
M. Mignoli ◽  
A. Peca ◽  
...  

We present the X-ray source catalog for the ∼479 ks Chandra exposure of the SDSS J1030+0524 field, which is centered on a region that shows the best evidence to date of an overdensity around a z > 6 quasar, and also includes a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1.7. Using wavdetect for initial source detection and ACIS Extract for source photometry and significance assessment, we create preliminary catalogs of sources that are detected in the full (0.5−7.0 keV), soft (0.5−2.0 keV), and hard (2−7 keV) bands, respectively. We produce X-ray simulations that mirror our Chandra observation to filter our preliminary catalogs and achieve a completeness level of > 91% and a reliability level of ∼95% in each band. The catalogs in the three bands are then matched into a final main catalog of 256 unique sources. Among them, 244, 193, and 208 are detected in the full, soft, and hard bands, respectively. The Chandra observation covers a total area of 335 arcmin2 and reaches flux limits over the central few square arcmins of ∼3 × 10−16, 6 × 10−17, and 2 × 10−16 erg cm−2 s−1 in the full, soft, and hard bands, respectively This makes J1030 field the fifth deepest extragalactic X-ray survey to date. The field is part of the Multiwavelength Survey by Yale-Chile (MUSYC), and is also covered by optical imaging data from the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT), near-infrared imaging data from the Canada France Hawaii Telescope WIRCam (CFHT/WIRCam), and Spitzer IRAC. Thanks to its dense multi-wavelength coverage, J1030 represents a legacy field for the study of large-scale structures around distant accreting supermassive black holes. Using a likelihood ratio analysis, we associate multi-band (r, z, J, and 4.5 μm) counterparts for 252 (98.4%) of the 256 Chandra sources, with an estimated reliability of 95%. Finally, we compute the cumulative number of sources in each X-ray band, finding that they are in general agreement with the results from the Chandra Deep Fields.


2018 ◽  
Vol 14 (S344) ◽  
pp. 53-56
Author(s):  
Maria-Rosa L. Cioni ◽  
Florian Niederhofer ◽  
Stefano Rubele ◽  
Ning-Chen Sun

AbstractVISTA observed the Small Magellanic Cloud (SMC), as part of the VISTA survey of the Magellanic Clouds system (VMC), for six years (2010–2016). The acquired multi-epoch YJKs images have allowed us to probe the stellar populations to an exceptional level of detail across an unprecedented wide area in the near-infrared. This contribution highlights the most recent VMC results obtained on the SMC focusing, in particular, on the clustering of young stellar populations, on the proper motion of stars in the main body of the galaxy and on the spatial distribution of the star formation history.


2019 ◽  
Vol 15 (S352) ◽  
pp. 12-12
Author(s):  
Pascal Oesch

AbstractOver the last few years, great progress has been made in understanding the build-up of the first generations of galaxies based on deep optical and near-infrared imaging from the Hubble Space Telescope. However, HST only samples the rest-frame UV light of galaxies at z …4, providing only limited information on the dust obscuration and on stellar masses of these sources. Fortunately, several Spitzer/IRAC programs have complemented the extragalactic HST fields with ultra-deep imaging data, allowing for a rest-frame optical view on early galaxies. Together with first ALMA/ NOEMA (sub)mm observations on distant galaxies, we are starting to gain a more and more complete picture of galaxy star-formation and mass build-up in the early universe. In this talk, I will present an overview of our current understanding of normal star-forming galaxies at z > 3 based the combination of HST+Spitzer+ALMA/NOEMA data. In particular, I will show how HST as already pushed into JWST territory with the discovery and spectroscopic confirmation of a galaxy at z = 11.1 ± 0.1, only : 400 Myr after the Big Bang. I will also highlight some of the exciting possibilities that lie ahead with JWST to push the spectroscopic frontier to the cosmic dawn and to finally probe the physics of early galaxies.


2006 ◽  
Vol 2 (S237) ◽  
pp. 447-447
Author(s):  
Satoshi Mayama ◽  
Motohide Tamura ◽  
Masahiko Hayashi

AbstractRNO91 is class II source currently in a transition phase between a protostar and a main-sequence star. It is known as a source of complex molecular outflows. Previous studies suggested that RNO91 was associated with a reflection nebula, a CO outflow, shock-excited H2 emission, and disk type structure. But the geometry of RNO91, especially its inner region, is not well confirmed yet. High resolution imaging is needed to understand the nature of RNO91 and its interaction with outflow. Thus, we conducted near-infrared imaging observations of RNO91 with the infrared camera CIAO mounted on the Subaru 8.2-m Telescope. We presented JHK band and optical images which resolved a complex asymmetrical circumstellar structure. We examined the color of RNO91 nebula and compared the geometry of the system suggested by our data with that already proposed on the basis of other studies. Our main results are as follows; 1. The K-band images show significant halo emission detected within ~2″ around the peak position while less halo emission is seen in shorter wavelength images such as J and optical. The nebula appears to become more circular and more diffuse with increasing wavelengths. The cut-off at 300AU derived from our radial surface brightness is consistent with the size of the polarization disk suggested by Draper & Tadhunter (1993). These consistencies indicate that this optically thick region is attributed to a disk-like structure.2. At J and optical, several bluer knot-like structures are detected around and beyond the halo emission. These bluer knots seen in our images are comparable to the size of the envelope detected in HCO+ emission surrounding RNO91 (Lee & Ho 2005). It is thus natural to suggest that these bluer knots are the near-infrared light scattered by an envelope structure which is disrupted by molecular outflows.3. The pseudo-true color composite image has an appearance of arc-shaped emission extending to the north and to the east through RNO91. On the counter part of this arc-shaped structure, the nebula appears to become more extended to the southwest from the central peak position in J band and optical images. We interpret these whole structures as a bottom of bipolar cavity seen relatively edge-on opening to the north and south directions.


Sign in / Sign up

Export Citation Format

Share Document