scholarly journals Presence of red giant population in the foreground stellar sub-structure of the Small Magellanic Cloud

Author(s):  
Dizna James ◽  
Smitha Subramanian ◽  
Abinaya O Omkumar ◽  
Adhya Mary ◽  
Kenji Bekki ◽  
...  

Abstract The eastern region of the Small Magellanic Cloud (SMC) is found to have a foreground stellar sub-structure, which is identified as a distance bimodality (∼ 12 kpc apart) in the previous studies using Red Clump (RC) stars. Interestingly, studies of Red Giant Branch (RGB) stars in the eastern SMC indicate a bimodal radial velocity (RV) distribution. In this study, we investigate the connection between these two bimodal distributions to better understand the nature and origin of the foreground stellar sub-structure in the eastern SMC. We use the Gaia EDR3 astrometric data and archival RV data of RGB stars for this study. We found a bimodal RV distribution of RGB stars (separated by ∼ 35–45 km s−1) in the eastern and south-western (SW) outer regions. The observed proper motion values of the lower and higher RV RGB components in the eastern regions are similar to those of the foreground and main-body RC stars respectively. This suggests that the two RGB populations in the eastern region are separated by a similar distance as those of the RC stars, and the RGB stars in the lower RV component are part of the foreground sub-structure. Based on the differences in the distance and RV of the two components, we estimated an approximate time of formation of this sub-structure as 307 ± 65 Myr ago. This is comparable with the values predicted by simulations for the recent epoch of tidal interaction between the Magellanic Clouds. Comparison of the observed properties of RGB stars, in the outer SW region, with N-body simulations shows that the higher RV component in the SW region is at a farther distance than the main body, indicating the presence of a stellar Counter-Bridge in the SW region of the SMC.

2018 ◽  
Vol 14 (S344) ◽  
pp. 53-56
Author(s):  
Maria-Rosa L. Cioni ◽  
Florian Niederhofer ◽  
Stefano Rubele ◽  
Ning-Chen Sun

AbstractVISTA observed the Small Magellanic Cloud (SMC), as part of the VISTA survey of the Magellanic Clouds system (VMC), for six years (2010–2016). The acquired multi-epoch YJKs images have allowed us to probe the stellar populations to an exceptional level of detail across an unprecedented wide area in the near-infrared. This contribution highlights the most recent VMC results obtained on the SMC focusing, in particular, on the clustering of young stellar populations, on the proper motion of stars in the main body of the galaxy and on the spatial distribution of the star formation history.


2020 ◽  
Vol 497 (3) ◽  
pp. 3746-3760
Author(s):  
Samyaday Choudhury ◽  
Richard de Grijs ◽  
Stefano Rubele ◽  
Kenji Bekki ◽  
Maria-Rosa L Cioni ◽  
...  

ABSTRACT We have derived high-spatial-resolution metallicity maps covering ∼42 deg2 across the Small Magellanic Cloud (SMC) in an attempt to understand its metallicity distribution and gradients up to a radius of ∼4○. Using the near-infrared VISTA Survey of the Magellanic Clouds, our data cover a thrice larger area compared with previous studies. We identify red giant branch (RGB) stars in spatially distinct Y, (Y − Ks) colour–magnitude diagrams. In any of our selected subregions, the RGB slope is used as an indicator of the average metallicity, based on calibration to metallicity using spectroscopic data. The metallicity distribution across the SMC is unimodal and can be fitted by a Gaussian distribution with a peak at [Fe/H] = −0.97 dex (σ[Fe/H] = 0.05 dex). We find evidence of a shallow gradient in metallicity (−0.031 ± 0.005 dex deg−1) from the Galactic Centre to radii of 2○–2${_{.}^{\circ}}$5, followed by a flat metallicity trend from ∼3${_{.}^{\circ}}$5 to 4○. We find that the SMC’s metallicity gradient is radially asymmetric. It is flatter towards the east than to the west, hinting at mixing and/or distortion of the spatial metallicity distribution (within the inner 3○), presumably caused by tidal interactions between the Magellanic Clouds.


2020 ◽  
Vol 500 (3) ◽  
pp. 2757-2776
Author(s):  
Abinaya O Omkumar ◽  
Smitha Subramanian ◽  
Florian Niederhofer ◽  
Jonathan Diaz ◽  
Maria-Rosa L Cioni ◽  
...  

ABSTRACT Recent observational studies identified a foreground stellar sub-structure traced by red clump (RC) stars (∼12 kpc in front of the main body) in the eastern regions of the Small Magellanic Cloud (SMC) and suggested that it formed during the formation of the Magellanic Bridge (MB), due to the tidal interaction of the Magellanic Clouds. Previous studies investigated this feature only up to 4${_{.}^{\circ}}$0 from the centre of the SMC due to the limited spatial coverage of the data and hence could not find a physical connection with the MB. To determine the spatial extent and properties of this foreground population, we analysed data from the Gaia Data Release 2 (DR2) of a ∼314 deg2 region centred on the SMC, which cover the entire SMC and a significant portion of the MB. We find that the foreground population is present only between 2${_{.}^{\circ}}$5 to ∼5°–6° from the centre of the SMC in the eastern regions, towards the MB and hence does not fully overlap with the MB in the plane of the sky. The foreground stellar population is found to be kinematically distinct from the stellar population of the main body with ∼35 km s−1 slower tangential velocity and moving to the north-west relative to the main body. Though the observed properties are not fully consistent with the simulations, a comparison indicates that the foreground stellar structure is most likely a tidally stripped counterpart of the gaseous MB and might have formed from the inner disc (dominated by stars) of the SMC. A chemical and 3D kinematic study of the RC stars along with improved simulations, including both tidal and hydro-dynamical effects, are required to understand the offset between the foreground structure and MB.


1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


Author(s):  
P K Nayak ◽  
A Subramaniam ◽  
S Subramanian ◽  
S Sahu ◽  
C Mondal ◽  
...  

Abstract We have demonstrated the advantage of combining multi-wavelength observations, from the ultraviolet (UV) to near-infrared, to study Kron 3, a massive star cluster in the Small Magellanic Cloud. We have estimated the radius of the cluster Kron 3 to be 2${_{.}^{\prime}}$0 and for the first time, we report the identification of NUV-bright red clump (RC) stars and the extension of the RC in colour and magnitude in the NUV versus (NUV−optical) colour-magnitude diagram (CMD). We found that extension of the RC is an intrinsic property of the cluster and it is not due to contamination of field stars or differential reddening across the field. We studied the spectral energy distribution of the RC stars, and estimated a small range in temperature ∼5000–5500 K, luminosity ∼60–90 L⊙ and radius ∼8.0–11.0 R⊙ supporting their RC nature. The range of UV magnitudes amongst the RC stars (∼23.3 to 24.8 mag) is likely caused by the combined effects of variable mass loss, variation in initial helium abundance (Yini = 0.23 to 0.28), and a small variation in age (6.5-7.5 Gyr) and metallicity ([Fe/H] = −1.5 to −1.3). Spectroscopic follow-up observations of RC stars in Kron 3 are necessary to confirm the cause of the extended RC.


1998 ◽  
Vol 15 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Miroslav D. Filipović ◽  
Paul A. Jones ◽  
Graeme L. White ◽  
Raymond F. Haynes

AbstractWe present a comparison between the latest Parkes radio surveys (Filipović et al. 1995, 1996, 1997) and Hα surveys of the Magellanic Clouds (Kennicutt & Hodge 1986). We have found 180 discrete sources in common for the Large Magellanic Cloud (LMC) and 40 in the field of the Small Magellanic Cloud (SMC). Most of these sources (95%) are HII regions and supernova remnants (SNRs). A comparison of the radio and Hα flux densities shows a very good correlation and we note that many of the Magellanic Clouds SNRs are embedded in HII regions.


1991 ◽  
Vol 148 ◽  
pp. 401-406 ◽  
Author(s):  
Klaas S. De Boer

General aspects of ISM studies using absorption line studies are given and available data are reviewed. Topics are: galactic foreground gas, individual fields in the Magellanic Clouds (MCs) and MC coronae. Overall investigations are discussed. It is demonstrated that the metals in the gas of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are a factor of 3 and 10, respectively, in abundance below solar levels. The depletion pattern in the LMC is similar to that of the Milky Way.


1991 ◽  
Vol 148 ◽  
pp. 161-164 ◽  
Author(s):  
S. van den Bergh

Star clusters in the Magellanic Clouds (MCs) differ from those in the Galaxy in a number of respects: (1) the Clouds contain a class of populous open clusters that has no Galactic counterpart; (2) Cloud clusters have systematically larger radii rh than those in the Galaxy; (3) clusters of all ages in the Clouds are, on average, more flattened than those in the Galaxy. In the Large Magellanic Cloud (LMC) there appear to have been two distinct epochs of cluster formation. LMC globulars have ages of 12-15 Gyr, whereas most populous open clusters have ages <5 Gyr. No such dichotomy is observed for clusters in the Small Magellanic Cloud (SMC) The fact that the SMC exhibits no enhanced cluster formation at times of bursts of cluster formation in the LMC, militates against encounters between the Clouds as a cause for enhanced rates of star and cluster formation.


Sign in / Sign up

Export Citation Format

Share Document