τ9 Eri: a bright pulsating magnetic Bp star in a 5.95-d double-lined spectroscopic binary

2021 ◽  
Vol 502 (4) ◽  
pp. 5200-5209
Author(s):  
K Woodcock ◽  
G A Wade ◽  
O Kochukhov ◽  
J Sikora ◽  
A Pigulski

ABSTRACT τ9 Eri is a Bp star that was previously reported to be a single-lined spectroscopic binary. Using 17 ESPaDOnS spectropolarimetric (Stokes V) observations, we identified the weak spectral lines of the secondary component and detected a strong magnetic field in the primary. We performed orbital analysis of the radial velocities of both components to find a slightly eccentric orbit (e = 0.129) with a period of 5.95382(2) d. The longitudinal magnetic field (Bℓ) of the primary was measured from each of the Stokes V profiles, with typical error bars smaller than 10 G. Equivalent widths (EWs) of least-squares deconvolution profiles corresponding to only the Fe lines were also measured. We performed frequency analysis of both the Bℓ and EW measurements, as well as of the Hipparcos, SMEI, and TESS photometric data. All sets of photometric observations produce two clear, strong candidates for the rotation period of the Bp star: 1.21 and 3.82 d. The Bℓ and EW measurements are consistent with only the 3.82-d period. We conclude that HD 25267 consists of a late-type Bp star (M = $3.6_{-0.2}^{+0.1}~\mathrm{ M}_\odot$, T = $12580_{-120}^{+150}$ K) with a rotation period of 3.82262(4) d orbiting with a period of 5.95382(2) d with a late-A/early-F type secondary companion (M = 1.6 ± 0.1 M⊙, T = $7530_{-510}^{+580}$ K). The Bp star’s magnetic field is approximately dipolar with i = 41 ± 2°, β = 158 ± 5°, and Bd = 1040 ± 50 G. All evidence points to the strong 1.209912(3)-d period detected in photometry, along with several other weaker photometric signals, as arising from g-mode pulsations in the primary.

2000 ◽  
Vol 175 ◽  
pp. 324-329 ◽  
Author(s):  
H.F. Henrichs ◽  
J.A. de Jong ◽  
J.-F. Donati ◽  
C. Catala ◽  
G.A. Wade ◽  
...  

AbstractNew circular spectropolarimetric observations of the B1 IIIe star β Cep (υsini = 25 km s−1) show a sinusoidally varying weak longitudinal magnetic field (~ 200 G peak-to-peak). The period corresponds to the 12 day period in the stellar wind variations observed in ultraviolet spectral lines. Maximum field occurs at maximum emission in the UV wind lines. This gives compelling evidence for a magnetic-rotator model for this star, with an unambiguous rotation period of 12 days.The similarity between the Hα emission phases in β Cep and in Be stars suggests that the origin of the Be phenomenon does not have to be rapid rotation: we propose that in β Cep the velocity to bring material in (Keplerian) orbit is provided by the high corotation velocity at the Alfvén radius (~10 R*), whereas in Be stars this is done by the rapid rotation of the surface. In both cases the cause of the emission phases has still to be found. Weak temporary magnetic fields remain the strongest candidate.A full paper, with results including additional measurements in June and July 1999, will appear in A & A.


2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


2020 ◽  
Vol 499 (2) ◽  
pp. 2734-2743
Author(s):  
S P Järvinen ◽  
S Hubrig ◽  
G Mathys ◽  
V Khalack ◽  
I Ilyin ◽  
...  

ABSTRACT High-resolution spectropolarimetric observations of the strongly magnetic, superslowly rotating rapidly oscillating Ap star HD 166473 are used to investigate the implications of the presence of a variable strong magnetic field on the vertical and surface horizontal distribution of various chemical elements. The analysis of the calculated least-squares deconvolution Stokes I and V profiles confirms the previously reported detection of non-uniform horizontal surface distribution of several chemical elements. To test the vertical abundance stratification of iron peak and rare earth elements, magnetic field measurements were carried out using spectral lines of these elements belonging to neutral and ionized stages. We find clear indication of the existence of a relation between the magnetic field strength and its orientation and vertical element stratification: magnetic field values obtained for elements in different stages close to the magnetic equator are rather similar, whereas the dispersion in field strengths is remarkably large in the regions close to magnetic field poles. At the phases of negative and positive extrema the mean longitudinal field strength determined from the analysis of the rare-earth element lines is usually stronger than when using Fe and Cr. The strongest mean longitudinal magnetic field, up to −4160 ± 226 G, is detected using the La ii line list at the negative extremum, followed by the measurements using the Pr iii lines with 〈Bz〉=−3740 ± 343 G and the Ce ii lines with 〈Bz〉 = −3372 ± 247 G. The strongest mean longitudinal magnetic field of positive polarity, up to 3584 ± 354 G is detected using the Pr iii lines, followed by the measurement 〈Bz〉 = 2517 ± 249 G using the Ce ii lines.


2018 ◽  
Vol 618 ◽  
pp. L2 ◽  
Author(s):  
S. P. Järvinen ◽  
S. Hubrig ◽  
I. Ilyin ◽  
M. Schöller ◽  
M. F. Nieva ◽  
...  

Aims. We focus on early-B type stars with helium overabundance, for which the presence of a magnetic field has not previously been reported. Methods. The measurements were carried out using high-spectral-resolution spectropolarimetric observations obtained with the High Accuracy Radial velocity Planet Searcher (HARPS) in polarimetric mode, installed at the ESO La Silla 3.6 m telescope. Results. For five He-rich stars, the longitudinal magnetic field was detected for the first time. For one target, HD 58260, the presence of a longitudinal magnetic field of the order of 1.8 kG has already been reported in the literature, but the magnetic field has remained constant over tens of years. Our measurement carried out using the polarimetric spectra obtained in 2015 March indicates a slight decrease of the longitudinal magnetic field strength compared to measurements reported in previous works. A search for periodic modulation in available photometric data allowed us to confidently establish a period of 2.64119 ± 0.00420 d in archival ASAS3 data for CPD–27°1791. No period could be determined for the other five stars. Conclusions. The obtained results support the scenario that all He-rich stars are detectably magnetic and form an extension of the Ap star phenomenon to higher temperatures.


2019 ◽  
Vol 622 ◽  
pp. A67 ◽  
Author(s):  
B. Buysschaert ◽  
C. Neiner ◽  
A. J. Martin ◽  
M. E. Oksala ◽  
C. Aerts ◽  
...  

Thanks to large dedicated surveys, large-scale magnetic fields have been detected for about 10% of early-type stars. We aim to precisely characterize the large-scale magnetic field of the magnetic component of the wide binary o Lupi, by using high-resolution ESPaDOnS and HARPSpol spectropolarimetry to analyze the variability of the measured longitudinal magnetic field. In addition, we have investigated the periodic variability using space-based photometry collected with the BRITE-Constellation by means of iterative prewhitening. The rotational variability of the longitudinal magnetic field indicates a rotation period Prot = 2.95333(2) d and that the large-scale magnetic field is dipolar, but with a significant quadrupolar contribution. Strong differences in the strength of the measured magnetic field occur for various chemical elements as well as rotational modulation for Fe and Si absorption lines, suggesting a inhomogeneous surface distribution of chemical elements. Estimates of the geometry of the large-scale magnetic field indicate i = 27 ± 10°, β = 74−9+7°, and a polar field strength of at least 5.25 kG. The BRITE photometry reveals the rotation frequency and several of its harmonics, as well as two gravity mode pulsation frequencies. The high-amplitude g-mode pulsation at f = 1.1057 d−1 dominates the line-profile variability of the majority of the spectroscopic absorption lines. We do not find direct observational evidence of the secondary in the spectroscopy. Therefore, we attribute the pulsations and the large-scale magnetic field to the B5IV primary of the o Lupi system, but we discuss the implications should the secondary contribute to or cause the observed variability.


1993 ◽  
Vol 138 ◽  
pp. 232-246 ◽  
Author(s):  
Gautier Mathys

AbstractAn original approach, the moment technique, is applied to analyze the shapes of spectral lines of Ap stars recorded in both circular polarizations. The longitudinal magnetic field, the asymmetry of the longitudinal magnetic field, and the quadratic field of the studied stars are derived. From the consideration of these quantities and of their variations through the stellar rotation cycle, constraints on the spatially unresolved structure of the magnetic fields are obtained.


2010 ◽  
Vol 6 (S273) ◽  
pp. 181-187
Author(s):  
J. Morin ◽  
J.-F. Donati ◽  
P. Petit ◽  
L. Albert ◽  
M. Auriére ◽  
...  

AbstractMagnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution.The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations bring novel constraints on magnetic field generation by dynamo effect in cool stars. In particular, the study of solar twins brings new insight on the impact of rotation on the solar dynamo, whereas the detection of strong and stable dipolar magnetic fields on fully convective stars questions the precise role of the tachocline in this process.


2010 ◽  
Vol 6 (S272) ◽  
pp. 192-193
Author(s):  
Huib F. Henrichs ◽  
Katrien Kolenberg ◽  
Benjamin Plaggenborg ◽  
Stephen C. Marsden ◽  
Ian A. Waite ◽  
...  

AbstractThe ultraviolet stellar wind lines of the photometrically periodic variable early B-type star σ Lupi were found to behave very similarly to what has been observed in known magnetic B stars, although no periodicity could be determined. AAT spectropolarimetric measurements with SEMPOL were obtained. We detected a longitudinal magnetic field with varying strength and amplitude of about 100 G with error bars of typically 20 G. This type of variability supports an oblique magnetic rotator model. We fold the equivalent width of the 4 usable UV spectra in phase with the well-known photometric period of 3.019 days, which we identify with the rotation period of the star. The magnetic field variations are consistent with this period. Additional observations with ESPaDOnS attached to the CFHT strongly confirmed this discovery, and allowed to determine a precise magnetic period. Like in the other magnetic B stars the wind emission likely originates in the magnetic equatorial plane, with maximum emission occurring when a magnetic pole points towards the Earth. The 3.0182 d magnetic rotation period is consistent with the photometric period, with maximum light corresponding to maximum magnetic field. No helium or other chemical peculiarity is known for this object.


1986 ◽  
Vol 6 (3) ◽  
pp. 312-316 ◽  
Author(s):  
O. B. Slee ◽  
G. J. Nelson ◽  
J . L. Innis ◽  
R. T. Stewart ◽  
A. Vaughan ◽  
...  

AbstractThe single G8V active chromosphere star HD36705 (AB Dor) was observed at 8.4 GHz with the Parkes 64 m telescope during three observing sessions involving a total of 21 days in the interval 1985 December to 1986 February. Subsequent photometric observations were made of the star with the 0.25 m and 0.45 m telescopes of the Monash Observatory in 1986 March-April. Two strong radio flares, each lasting three days, were detected; they yielded peak radio powers of P8.4≈4×109 W Hz-1, comparable with the microwave power emitted by the RS CVn binaries. Significant circular polarization of 13% left-hand was measured on only one of the six active days. The 8.4 GHz flux density showed smooth variation over an interval of several hours, consistent with the flare source being partly occulted by the stellar disk as the star rotated. When all the radio data was phase-binned using the known rotation period of 0.514 day we found two radio maxima corresponding to radio sources at stellar longitudes ~180° apart. The subsequent photometric data showed intensity variations that were consistent with the starspots at the same approximate longitudes. We thus interpret our radio curve as showing the presence of comparatively small (<0.5 D*) radio sources in the corona above the star spots. The upper limit to source diameter gives a peak brightness temperature ≥2×l010 K, which can be achieved by gyro-synchrotron emission only if the source is optically thick and the electrons, with average energy ~ 2 MeV, have a hard energy spectrum. The observed radiation can be due only to very high harmonics of the gyro-frequency, leading to an estimate for the magnetic field strength of ~30G.


1987 ◽  
Vol 7 (2) ◽  
pp. 151-158
Author(s):  
D. A. H. Buckley ◽  
I. R. Tuohy

AbstractWe report spectroscopic and photometric observations of the new DQ Hercuis system 1H0542-407, recently discovered by us to be the optical counterpart of a HEAO-1 X-ray source. Medium resolution spectroscopy using the AAT in the region λ3930 to λ4960 conducted over consecutive nights shows radial velocity variations at periods of ∼ 1910 s, consistent with the white dwarf rotation period, and 5.7 h, in agreement with the orbital period derived from our EXOSAT observations. The K semi-amplitude velocities are ∼ 50 and 20 km s-1 respectively, leading to a mass function f(M) = 3.3 ± 0.6 × 10-3M⊙ and an orbital inclination close to 20°. The emission line profiles are characterized by simple Gaussians whose FWHM vary at the rotation period. A time series analysis of high resolution photometry conducted on the ANU 2.3 metre telescope reveals the presence of several periodicities, including the orbital sidebands. The dominant sideband (Vr − Vo) arises from X-rays reprocessed in a region corotating at the orbital frequency. A model is developed for 1H0542-407 which indicates that the accretion disk is disrupted at ∼5Rwd by the primary’s magnetic field. The short period velocity variations arise within the magnetosphere. A white dwarf magnetic field strength of < ∼ 3 MG is implied.


Sign in / Sign up

Export Citation Format

Share Document