scholarly journals Chemo-dynamics and asteroseismic ages of seven metal-poor red giants from the Kepler field

Author(s):  
Arthur Alencastro Puls ◽  
Luca Casagrande ◽  
Stephanie Monty ◽  
David Yong ◽  
Fan Liu ◽  
...  

Abstract In this work we combine information from solar-like oscillations, high-resolution spectroscopy and Gaia astrometry to derive stellar ages, chemical abundances and kinematics for a group of seven metal-poor Red Giants and characterise them in a multidimensional chrono-chemo-dynamical space. Chemical abundance ratios were derived through classical spectroscopic analysis employing 1D LTE atmospheres on Keck/HIRES spectra. Stellar ages, masses and radii were calculated with grid-based modelling, taking advantage of availability of asteroseismic information from Kepler. The dynamical properties were determined with Galpy using Gaia EDR3 astrometric solutions. Our results suggest that underestimated parallax errors make the effect of Gaia parallaxes more important than different choices of model grid or – in the case of stars ascending the RGB – mass-loss prescription. Two of the stars in this study are identified as potentially evolved halo blue stragglers. Four objects are likely members of the accreted Milky Way halo, and their possible relationship with known accretion events is discussed.

2019 ◽  
Vol 627 ◽  
pp. A173 ◽  
Author(s):  
M. Valentini ◽  
C. Chiappini ◽  
D. Bossini ◽  
A. Miglio ◽  
G. R. Davies ◽  
...  

Context. Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Aims. Age estimates are very uncertain and are available for only a small number of metal-poor stars. We present the first results of a pilot programme aimed at deriving precise masses, ages, and chemical abundances for metal-poor halo giants using asteroseismology and high-resolution spectroscopy. Methods. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improve spectroscopic temperatures, metallicities, and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss and [α/Fe]-enhancement). Orbits were computed using Gaia DR2 data. Results. The stars are found to be normal metal-poor halo stars (i.e. non C-enhanced), and an abundance pattern typical of old stars (i.e. α and Eu-enhanced), and have masses in the 0.80−1.0 M⊙ range. The inferred model-dependent stellar ages are found to range from 7.4 Gyr to 13.0 Gyr with uncertainties of ∼30%−35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from the APOGEE survey and a set of M4 stars. Conclusions. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ∼ −0.8 to −2 dex) are very old >9 Gyr (14 out of 19 stars), and all of the stars are older than >5 Gyr (within the 68 percentile confidence level).


2011 ◽  
Vol 7 (S283) ◽  
pp. 486-487
Author(s):  
Thaise S. Rodrigues ◽  
Walter J. Maciel

AbstractCentral stars of planetary nebulae (CSPN) have a relatively large mass interval, so that it is expected that these stars also have different ages, typically above 1 Gyr. Apart from the properties of the CSPN themselves, the problem of age determination is also important in the context of the chemical evolution of the Galaxy, for instance in the understanding of the time variation of chemical abundance gradients. In this work, we estimated the ages of a sample of CSPN on the basis of some correlations between their kinematic properties and the expected ages. According to these correlations, the observed dispersions in the U, V, W velocities are uniquely defined by the stellar ages. The adopted correlations were derived from the recent Geneva-Copenhagen survey of galactic stars. Preliminary results suggest the most CSPN in the galactic disk have ages under 3 Gyr. These results are also compared with some recent age distributions based on independent correlations involving the nebular chemical abundances.


2009 ◽  
Vol 26 (3) ◽  
pp. 354-358 ◽  
Author(s):  
L. Pompéia

AbstractThe chemical compositions of stars from the Asymptotic Giant Branch are still poorly known due to the low temperatures of their atmospheres and therefore the presence of many molecular transitions hampering the analysis of atomic lines. One way to overcome this difficulty is by the study of lines in regions free from molecular contamination. We have chosen some of those regions to study the chemical abundance of the S-type star GZ Peg. Stellar parameters are derived from spectroscopic analysis and a metallicity of –0.77 dex is found. Chemical abundances of 9 elements are reported and an enhancement of s-process elements is inferred, typical to that of an S-type star.


2020 ◽  
Vol 643 ◽  
pp. A83
Author(s):  
C. C. Worley ◽  
P. Jofré ◽  
B. Rendle ◽  
A. Miglio ◽  
L. Magrini ◽  
...  

Context. The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such as Kepler, K2, and CoRoT. Combining the measurements from spectroscopy and asteroseismology allows us to attain greater accuracy with regard to the stellar parameters needed to characterise the stellar populations of the Milky Way. Aims. The aim of this Gaia-ESO Survey special project is to produce a catalogue of self-consistent stellar parameters by combining measurements from high-resolution spectroscopy and precision asteroseismology. Methods. We carried out an iterative analysis of 90 K2@Gaia-ESO red giants. The spectroscopic values of Teff were used as input in the seismic analysis to obtain log g values. The seismic estimates of log g were then used to re-determine the spectroscopic values of Teff and [Fe/H]. Only one iteration was required to obtain parameters that are in good agreement for both methods and, thus, to obtain the final stellar parameters. A detailed analysis of outliers was carried out to ensure a robust determination of the parameters. The results were then combined with Gaia DR2 data to compare the seismic log g with a parallax-based log g and to investigate instances of variations in the velocity and possible binaries within the dataset. Results. This analysis produced a high-quality catalogue of stellar parameters for 90 red giant stars from K2@Gaia-ESO that were determined through iterations between spectroscopy and asteroseismology. We compared the seismic gravities with those based on Gaia parallaxes to find an offset which is similar to other studies that have used asteroseismology. Our catalogue also includes spectroscopic chemical abundances and radial velocities, as well as indicators for possible binary detections.


2019 ◽  
Vol 492 (1) ◽  
pp. L50-L55 ◽  
Author(s):  
Earl Patrick Bellinger

ABSTRACT Owing to their simplicity and ease of application, seismic scaling relations are widely used to determine the properties of stars exhibiting solar-like oscillations, such as solar twins and red giants. So far, no seismic scaling relations for determining the ages of red giant stars have been developed. Such relations would be desirable for Galactic Archaeology, which uses stellar ages to map the history of the Milky Way. The ages of red giants must instead be estimated with reference to grids of theoretical stellar models, which can be computationally intensive. Here, I present an exhaustive search for scaling age relations involving different combinations of observable quantities. The candidate scaling relations are calibrated and tested using more than 1000 red giant stars whose ages were obtained via grid-based modelling. I report multiple high-quality scaling relations for red giant branch stars, the best of which are shown to be approximately as accurate as grid-based modelling with typical uncertainties of 15 per cent. Additionally, I present new scaling mass and radius relations for red giants as well.


2002 ◽  
Vol 187 ◽  
pp. 57-69
Author(s):  
Nami Mowlavi

The production of elements from helium-3 to fluorine in low- and intermediate-mass stars is reviewed and compared to chemical abundances observed at the surface of both red giant branch and asymptotic giant branch stars. It is highlighted that, while the trends predicted by standard models are generally well confirmed, many chemical abundances observed at the surface of red giants require the operation of non-standard mixing in the stellar interior. In addition, chemical abundance predictions from presently available asymptotic giant branch models further suffer from the uncertainties affecting the third dredge-up phenomenon, the source of neutrons and the hot bottom burning process.


2015 ◽  
Vol 11 (S317) ◽  
pp. 45-50 ◽  
Author(s):  
Wako Aoki ◽  
Timothy C. Beers ◽  
Takuma Suda ◽  
Satoshi Honda ◽  
Young Sun Lee

AbstractLarge surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <−2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <−3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <−2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500–5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.


2015 ◽  
Vol 575 ◽  
pp. A12 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti
Keyword(s):  

1978 ◽  
Vol 80 ◽  
pp. 177-182
Author(s):  
R. Canterna ◽  
R. A. Schommer

Photometric metal abundances of individual red giants in eight extremely distant halo globular clusters and the Draco and Ursa Minor dwarf spheroidal galaxies have been obtained using the Washington broad-band system, C, M, T1, T2(Canterna 1976). Observations were made at the KPNO 2.1-m and CTIO 1.5-m telescopes. In Table I we list for each system the mean value of [Fe/H], the number of stars observed in each system, n, the Galactocentric distance, RGC, the intrinsic color of the giant branch at the level of the horizontal branch (HB), (B-V)o,g, and the fraction of HB stars bluer than the RR Lyrae gap, fB. Sources for unpublished color-magnitude diagram (CMD) data are: Pal 11 (Canterna and Schommer), Pal 12 (Canterna and Harris), and Ursa Minor (Schommer, Olszewski and Kunkel).


Sign in / Sign up

Export Citation Format

Share Document