scholarly journals Kinematic age determinations of planetary nebula central stars

2011 ◽  
Vol 7 (S283) ◽  
pp. 486-487
Author(s):  
Thaise S. Rodrigues ◽  
Walter J. Maciel

AbstractCentral stars of planetary nebulae (CSPN) have a relatively large mass interval, so that it is expected that these stars also have different ages, typically above 1 Gyr. Apart from the properties of the CSPN themselves, the problem of age determination is also important in the context of the chemical evolution of the Galaxy, for instance in the understanding of the time variation of chemical abundance gradients. In this work, we estimated the ages of a sample of CSPN on the basis of some correlations between their kinematic properties and the expected ages. According to these correlations, the observed dispersions in the U, V, W velocities are uniquely defined by the stellar ages. The adopted correlations were derived from the recent Geneva-Copenhagen survey of galactic stars. Preliminary results suggest the most CSPN in the galactic disk have ages under 3 Gyr. These results are also compared with some recent age distributions based on independent correlations involving the nebular chemical abundances.

2019 ◽  
Vol 627 ◽  
pp. A173 ◽  
Author(s):  
M. Valentini ◽  
C. Chiappini ◽  
D. Bossini ◽  
A. Miglio ◽  
G. R. Davies ◽  
...  

Context. Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Aims. Age estimates are very uncertain and are available for only a small number of metal-poor stars. We present the first results of a pilot programme aimed at deriving precise masses, ages, and chemical abundances for metal-poor halo giants using asteroseismology and high-resolution spectroscopy. Methods. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improve spectroscopic temperatures, metallicities, and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss and [α/Fe]-enhancement). Orbits were computed using Gaia DR2 data. Results. The stars are found to be normal metal-poor halo stars (i.e. non C-enhanced), and an abundance pattern typical of old stars (i.e. α and Eu-enhanced), and have masses in the 0.80−1.0 M⊙ range. The inferred model-dependent stellar ages are found to range from 7.4 Gyr to 13.0 Gyr with uncertainties of ∼30%−35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from the APOGEE survey and a set of M4 stars. Conclusions. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ∼ −0.8 to −2 dex) are very old >9 Gyr (14 out of 19 stars), and all of the stars are older than >5 Gyr (within the 68 percentile confidence level).


2018 ◽  
Vol 14 (S344) ◽  
pp. 122-124
Author(s):  
J. V. Sales Silva ◽  
H. Perottoni ◽  
K. Cunha ◽  
H. J. Rocha-Pinto ◽  
D. Souto ◽  
...  

AbstractThe outer stellar halo is home to a number of substructures that are remnants of former interactions of the Galaxy with its dwarf satellites. Triangulum-Andromeda (TriAnd) is one of these halo substructures, found as a debris cloud by Rocha-Pinto et al., (2004) using 2MASS M giants. Would be these structures related to dwarf galaxies or to the galactic disk? To uncover the nature of these stars we performed a high-resolution spectroscopic study (R = 40,000) along with a kinematic analysis using Gaia data. We determined the atmospheric parameters and chemical abundances of Ca and Mg for the 13 TriAnd candidate stars along with their respective orbits. Our results indicate that the TriAnd stars analyzed have a galactic nature but that these stars are not from the local thin disk.


2018 ◽  
Vol 619 ◽  
pp. A130 ◽  
Author(s):  
V. Adibekyan ◽  
P. de Laverny ◽  
A. Recio-Blanco ◽  
S. G. Sousa ◽  
E. Delgado-Mena ◽  
...  

Context. Finding solar siblings, that is, stars that formed in the same cluster as the Sun, will yield information about the conditions at the Sun’s birthplace. Finding possible solar siblings is difficult since they are spread widely throughout the Galaxy. Aims. We search for solar sibling candidates in AMBRE, the very large spectra database of solar vicinity stars. Methods. Since the ages and chemical abundances of solar siblings are very similar to those of the Sun, we carried out a chemistry- and age-based search for solar sibling candidates. We used high-resolution spectra to derive precise stellar parameters and chemical abundances of the stars. We used these spectroscopic parameters together with Gaia DR2 astrometric data to derive stellar isochronal ages. Gaia data were also used to study the kinematics of the sibling candidates. Results. From about 17 000 stars that are characterized within the AMBRE project, we first selected 55 stars whose metallicities are closest to the solar value (−0.1 ≤ [Fe/H] ≤ 0.1 dex). For these stars we derived precise chemical abundances of several iron-peak, α- and neutron-capture elements, based on which we selected 12 solar sibling candidates with average abundances and metallicities between −0.03 and 0.03 dex. Our further selection left us with four candidates with stellar ages that are compatible with the solar age within observational uncertainties. For the two of the hottest candidates, we derived the carbon isotopic ratios, which are compatible with the solar value. HD 186302 is the most precisely characterized and probably the most probable candidate of our four best candidates. Conclusions. Very precise chemical characterization and age estimation is necessary to identify solar siblings. We propose that in addition to typical chemical tagging, the study of isotopic ratios can give further important information about the relation of sibling candidates with the Sun. Ideally, asteroseismic age determinations of the candidates could solve the problem of imprecise isochronal ages.


Author(s):  
Arthur Alencastro Puls ◽  
Luca Casagrande ◽  
Stephanie Monty ◽  
David Yong ◽  
Fan Liu ◽  
...  

Abstract In this work we combine information from solar-like oscillations, high-resolution spectroscopy and Gaia astrometry to derive stellar ages, chemical abundances and kinematics for a group of seven metal-poor Red Giants and characterise them in a multidimensional chrono-chemo-dynamical space. Chemical abundance ratios were derived through classical spectroscopic analysis employing 1D LTE atmospheres on Keck/HIRES spectra. Stellar ages, masses and radii were calculated with grid-based modelling, taking advantage of availability of asteroseismic information from Kepler. The dynamical properties were determined with Galpy using Gaia EDR3 astrometric solutions. Our results suggest that underestimated parallax errors make the effect of Gaia parallaxes more important than different choices of model grid or – in the case of stars ascending the RGB – mass-loss prescription. Two of the stars in this study are identified as potentially evolved halo blue stragglers. Four objects are likely members of the accreted Milky Way halo, and their possible relationship with known accretion events is discussed.


1978 ◽  
Vol 76 ◽  
pp. 215-224 ◽  
Author(s):  
Manuel Peimbert

PN can be divided into four types depending on their chemical composition. In order of decreasing heavy element abundances the types are: I) He and N rich, II) intermediate population, III) high velocity, and IV) halo population. The type II PN are overabundant in N and C relative to the Orion Nebula. Well defined gradients across the galactic disk of He, N and O are derived from type II PN; the oxygen gradient is similar to the metallicity gradient derived from GK giants and F main sequence stars. By comparing the O, Ne and S abundances of PN of types III and IV with the Fe abundances of stars of similar population it is found that the O, Ne and S enrichment in the Galaxy probably took place before the Fe enrichment.


2019 ◽  
Vol 624 ◽  
pp. A78 ◽  
Author(s):  
E. Delgado Mena ◽  
A. Moya ◽  
V. Adibekyan ◽  
M. Tsantaki ◽  
J. I. González Hernández ◽  
...  

Aims. The purpose of this work is to evaluate how several elements produced by different nucleosynthesis processes behave with stellar age and provide empirical relations to derive stellar ages from chemical abundances. Methods. We derived different sets of ages using Padova and Yonsei–Yale isochrones and HIPPARCOS and Gaia parallaxes for a sample of more than 1000 FGK dwarf stars for which he have high-resolution (R ~ 115 000) and high-quality spectra from the HARPS-GTO program. We analyzed the temporal evolution of different abundance ratios to find the best chemical clocks. We applied multivariable linear regressions to our sample of stars with a small uncertainty on age to obtain empirical relations of age as a function of stellar parameters and different chemical clocks. Results. We find that [α/Fe] ratio (average of Mg, Si, and Ti), [O/Fe] and [Zn/Fe] are good age proxies with a lower dispersion than the age-metallicity dispersion. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (i.e., low-α) but in the case of the chemically defined thick disk stars (i.e., high-α) only the elements Mg, Si, Ca, and Ti II show a clear correlation with age. We find that the thick disk stars are more enriched in light-s elements than thin disk stars of similar age. The maximum enrichment of s-process elements in the thin disk occurs in the youngest stars which in turn have solar metallicity. The slopes of the [X/Fe]-age relations are quite constant for O, Mg, Si, Ti, Zn, Sr, and Eu regardless of the metallicity. However, this is not the case for Al, Ca, Cu and most of the s-process elements, which display very different trends depending on the metallicity. This demonstrates the limitations of using simple linear relations based on certain abundance ratios to obtain ages for stars of different metallicities. Finally, we show that by using 3D relations with a chemical clock and two stellar parameters (either Teff, [Fe/H] or stellar mass) we can explain up to 89% of age variance in a star. A similar result is obtained when using 2D relations with a chemical clock and one stellar parameter, explaining up to a 87% of the variance. Conclusions. The complete understanding of how the chemical elements were produced and evolved in the Galaxy requires the knowledge of stellar ages and precise chemical abundances. We show how the temporal evolution of some chemical species change with metallicity, with remarkable variations at super-solar metallicities, which will help to better constrain the yields of different nucleosynthesis processes along the history of the Galaxy.


2003 ◽  
Vol 212 ◽  
pp. 162-163 ◽  
Author(s):  
Simone Daflon ◽  
Katia Cunha

We present non-LTE abundances of carbon, nitrogen, oxygen, magnesium, aluminum, silicon and sulfur, derived for a sample of 70 O9-B2 main sequence stars of the Galactic disk and analyze the distribution of the chemical abundances in terms of radial gradients within 4.4-12.9 kpc from the center of the Galaxy. The derived gradients are flatter than those presented by the most recent studies about the radial gradients of stellar abundances.


2002 ◽  
Vol 187 ◽  
pp. 91-96
Author(s):  
Bengt Edvardsson

The empirical study of the build-up of chemical abundances in the galactic disk is an important route to our understanding of the history of the Galaxy. It supplies a wealth of constraints to the models and simulations being done. There are, however, still many unanswered questions concerning the details of the abundance patterns, and many uncertainties and possibly inconsistencies in the data at hand. Ideally one would like to map the abundances of individual elements as a function of time and 3-dimensional position in the disk. The study of the ISM today and of the surfaces of individual stars as probes of the ISM from the time and position of their formation help us in this endeavour.


2019 ◽  
Vol 629 ◽  
pp. A117 ◽  
Author(s):  
L. Origlia ◽  
E. Dalessandro ◽  
N. Sanna ◽  
A. Mucciarelli ◽  
E. Oliva ◽  
...  

Aims. The Scutum complex in the inner disk of the Galaxy hosts a number of young clusters and associations of red supergiant stars that are heavily obscured by dust extinction. These stars are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. Within the SPA Large Programme at the TNG, we secured GIANO-B high-resolution (R ≃ 50 000) YJHK spectra of 11 red supergiants toward the Alicante 7 and Alicante 10 associations near the RSGC3 cluster. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several hundreds of atomic and molecular lines that are suitable for chemical abundance determinations. We also measured a prominent diffuse interstellar band at λ1317.8 nm (vacuum). This provides an independent reddening estimate. Results. The radial velocities, Gaia proper motions, and extinction of seven red supergiants in Alicante 7 and three in Alicante 10 are consistent with them being members of the associations. One star toward Alicante 10 has kinematics and low extinction that are inconsistent with a membership. By means of spectral synthesis and line equivalent width measurements, we obtained chemical abundances for iron-peak, CNO, alpha, other light, and a few neutron-capture elements. We found average slightly subsolar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe], enhancement of [N/Fe], and relatively low 12C/13C <  15, which is consistent with CN cycled material and possibly some additional mixing in their atmospheres.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


Sign in / Sign up

Export Citation Format

Share Document