scholarly journals Observational properties of a general relativistic instability supernova from a primordial supermassive star

2021 ◽  
Vol 503 (1) ◽  
pp. 1206-1213
Author(s):  
Takashi J Moriya ◽  
Ke-Jung Chen ◽  
Kimihiko Nakajima ◽  
Nozomu Tominaga ◽  
Sergei I Blinnikov

ABSTRACT We present the expected observational properties of a general relativistic instability supernova (GRSN) from the 55 500 M⊙ primordial (Population III) star. Supermassive stars exceeding $10^4\, \mathrm{M}_\odot$ may exist in the early Universe. They are generally considered to collapse through the general relativistic instability to be seed black holes to form supermassive ($\sim 10^9\, \mathrm{M}_\odot$) black holes observed as high-redshift quasars. Some of them, however, may explode as GRSNe if the explosive helium burning unbinds the supermassive stars following the collapse triggered by the general relativistic instability. We perform the radiation hydrodynamics simulation of the GRSN starting shortly before the shock breakout. We find that the GRSN is characterized by a long-lasting (550 d) luminous ($1.5\times 10^{44}\, \mathrm{erg\, s^{-1}}$) plateau phase with the photospheric temperature of around 5000 K in the rest frame. The plateau phase lasts for decades when it appears at high redshifts and it will likely be observed as a persistent source in the future deep near-infrared imaging surveys. Especially, the near-infrared images reaching 29 AB magnitude that can be obtained by Galaxy and Reionization EXplorer (G-REX) and James Webb Space Telescope (JWST) allow us to identify GRSNe up to z ≃ 15. Deeper images enable us to discover GRSNe at even higher redshifts. Having extremely red colour, they can be distinguished from other persistent sources such as high-redshift galaxies by using colour information. We conclude that the deep near-infrared images are able to constrain the existence of GRSNe from the primordial supermassive stars in the Universe even without the time domain information.

2003 ◽  
Author(s):  
Ivo Labbe ◽  
Marijn Franx ◽  
Gregory Rudnick ◽  
Alan F. M. Moorwood ◽  
Natascha Foerster Schreiber ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2019 ◽  
Vol 15 (S341) ◽  
pp. 226-230
Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K. Inoue ◽  
Anton Vikaeus ◽  
...  

AbstractRecently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.


1989 ◽  
Vol 134 ◽  
pp. 376-378
Author(s):  
D. H. Hughes ◽  
E. I. Robson ◽  
M. J. Ward

We are currently studying a selection of active galaxies using the new IR array camera IRCAM on UKIRT. Our aim is to seperate the underlying stellar emission from that of the active galactic nucleus. Although the optical is the best wavelength region to discriminate between the different populations in the underlying spiral and elliptical galaxies, it is in the infrared that the contrast between the non-thermal central core and the surrounding galaxy is increased. We present reduced data from infrared images taken at 1.25, 1.65 and 2.2 μm with an image scale of 0.6 arcsec/pixel together with optical 0.44 and 0.55 μm CCD images of the Seyfert galaxy NGC1275.


2017 ◽  
Vol 849 (2) ◽  
pp. 155 ◽  
Author(s):  
Marta Volonteri ◽  
Amy E. Reines ◽  
Hakim Atek ◽  
Daniel P. Stark ◽  
Maxime Trebitsch

2009 ◽  
Vol 706 (2) ◽  
pp. 1020-1035 ◽  
Author(s):  
Erin Mentuch ◽  
Roberto G. Abraham ◽  
Karl Glazebrook ◽  
Patrick J. McCarthy ◽  
Haojing Yan ◽  
...  

1998 ◽  
Vol 300 (3) ◽  
pp. 817-827 ◽  
Author(s):  
Martin G. Haehnelt ◽  
Priyamvada Natarajan ◽  
Martin J. Rees

2019 ◽  
Vol 632 ◽  
pp. A98 ◽  
Author(s):  
Antonello Calabrò ◽  
Emanuele Daddi ◽  
Jérémy Fensch ◽  
Frédéric Bournaud ◽  
Anna Cibinel ◽  
...  

While the formation of stellar clumps in distant galaxies is usually attributed to gravitational violent disk instabilities, we show here that major mergers also represent a competitive mechanism to form bright clumps. Using ∼0.1″ resolution ACS F814W images in the entire COSMOS field, we measured the fraction of clumpy emission in 109 main sequence (MS) and 79 Herschel-detected starbursts (off-MS) galaxies at 0.5 < z < 0.9, representative of normal versus merger induced star-forming activity, respectively. We additionally identify merger samples from visual inspection and from Gini-M20 morphological parameters. Regardless of the merger criteria adopted, the clumpiness distribution of merging systems is different from that of normal isolated disks at a > 99.5% confidence level. The former reaches higher clumpiness values up to 20% of the total galaxy emission. We confirm the merger induced clumpiness enhancement with novel hydrodynamical simulations of colliding galaxies with gas fractions typical of z ∼ 0.7. Multi-wavelength images of three starbursts in the CANDELS field support the young nature of clumps, which are likely merger products rather than older preexisting structures. Finally, for a subset of 19 starbursts with existing near-infrared rest frame spectroscopy, we find that the clumpiness is mildly anti-correlated with the merger phase, which decreases toward final coalescence. Our result can explain recent ALMA detections of clumps in hyperluminous high-z starbursts, while normal objects are smooth. This work raises a question as to the role of mergers on the origin of clumps in high redshift galaxies in general.


Sign in / Sign up

Export Citation Format

Share Document