scholarly journals A z = 2.5 protocluster associated with the radio galaxy MRC 2104-242: star formation and differing mass functions in dense environments

2014 ◽  
Vol 440 (4) ◽  
pp. 3262-3274 ◽  
Author(s):  
E. A. Cooke ◽  
N. A. Hatch ◽  
S. I. Muldrew ◽  
E. E. Rigby ◽  
J. D. Kurk
1990 ◽  
Vol 124 ◽  
pp. 309-314 ◽  
Author(s):  
Arjun Dey ◽  
Wil van Breugel ◽  
Joseph C. Shields

AbstractWe present the first results of a multiwavelength study of IRAS galaxies with excess radio emission. The sample was selected by cross-correlating the IRAS Faint Source Survey (for |b| ≥ 50°) and the Point Source Catalogue (for 10° < |b| < 50°) with the Texas radio survey. Recent optical (imaging and spectroscopic) and radio (VLA) observations are discussed. These observations will be used to investigate possible connections between radio galaxy activity, star formation and galaxy interactions.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


1991 ◽  
Vol 148 ◽  
pp. 139-144 ◽  
Author(s):  
Robert C. Kennicutt

The H II regions in the Magellanic Clouds provide an opportunity to characterize the global star formation properties of a galaxy at close range. They also provide a unique laboratory for testing empirical tracers of the massive star formation rates and initial mass functions in more distant galaxies, and for studying the dynamical interactions between massive stars and the interstellar medium. This paper discusses several current studies in these areas.


1996 ◽  
Vol 171 ◽  
pp. 474-475
Author(s):  
Rogier A. Windhorst ◽  
Sam M. Pascarelle ◽  
William C. Keel

We present a 67-orbit HST/WFPC2 exposure on the weak radio galaxy 53W002 at z=2.390 and its surrounding cluster. Color Plate 1 shows 12 orbits in IF814W & VF606W, and 24 in BF450W. Potential cluster members were identified through 15 orbits in F410M, optimized for narrow-band searches for compact Lyα objects at z≃2.4 (P96), and confirmed through spectroscopy (W91, P96); 16 candidates were found with significant narrow-band emission in F410M: 4 out of 5 had a confirming MMT spectroscopic redshift at z≃2.40 (P96). All are located within 60″ from 53W002, or ∼ 0.24h–1100 Mpc (qo=0.5) at z ≃2.4, the physical scale of a group or small galaxy cluster. One object contains a weak (variable) AGN, another is a merger with two companions. Their underlying young stellar population is very compact, with rh.l. ≃0.2″ (≃ 0.8h–1100 kpc), and considerably fainter than the L∗-value at z∼2.4, implying sub-galactic sized objects. These results may explain why ground-based Lya searches for PG's have been largely unsuccessful. The narrow-line galaxy 53W002 was imaged in the PC at ∼0.07″ FWHM (WK95, see also W94). Its AGN component is ≤ 20±4% of the total continuum, surrounded by an extended r1/4-envelope with rh.l. ≃1.1″ (4.3 kpc), and has an SED of ∼0.3 Gyr in the center to ∼0.5-1.0 Gyr at ∼4 kpc. A one-sided cloud is seen ∼1.8 kpc West, ∼0.3 mag bluer than the SED, aligned with the radio source and its Ly-α cloud, presumably weak scattered AGN light, and/or jet-induced star-formation.


2005 ◽  
Vol 13 ◽  
pp. 358-362
Author(s):  
Bruce Elmegreen

AbstractTurbulence, self-gravity, and cooling convert most of the interstellar medium into cloudy structures that form stars. Turbulence compresses the gas into clouds directly and it moves pre-existing clouds around passively when there are multiple phases of temperature. Self-gravity also partitions the gas into clouds, forming giant regular complexes in spiral arms and in resonance rings and contributing to the scale-free motions generated by turbulence. Dense clusters form in the most strongly self-gravitating cores of these clouds, often triggered by compression from local stars. Pre-star formation processes inside clusters are not well observed, but the high formation rates and high densities of pre-stellar objects, and their power law mass functions suggest that turbulence, self-gravity, and energy dissipation are involved there too.


1998 ◽  
Vol 502 (1) ◽  
pp. 245-252 ◽  
Author(s):  
John A. Graham

2019 ◽  
Vol 632 ◽  
pp. A26 ◽  
Author(s):  
R. Gilli ◽  
M. Mignoli ◽  
A. Peca ◽  
R. Nanni ◽  
I. Prandoni ◽  
...  

We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff–Riley type II (FRII) radio galaxy at z = 1.7 in the deep multiband survey around the z = 6.3 quasi-stellar object (QSO) SDSS J1030+0524. Based on a 6 h VLT/MUSE and on a 4 h LBT/LUCI observation, we identify at least eight galaxy members in this structure with spectroscopic redshift z = 1.687 − 1.699, including the FRII galaxy at z = 1.699. Most members are distributed within 400 kpc from the FRII core. Nonetheless, the whole structure is likely much more extended, as one of the members was serendipitously found at ∼800 kpc projected separation. The classic radio structure of the FRII itself extends for ∼600 kpc across the sky. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of ∼8–60 M⊙ yr−1. For the brightest of them, a half-light radius of 2.2 ± 0.8 kpc at 8000 Å rest-frame was determined based on adaptive optics-assisted observations with LBT/SOUL in the Ks band. We do not observe any strong galaxy morphological segregation or concentration around the FRII core. This suggests that the structure is far from being virialized and likely constitutes the progenitor of a local massive galaxy group or cluster caught in its main assembly phase. Based on a 500 ks Chandra ACIS-I observation, we found that the FRII nucleus hosts a luminous QSO (L2 − 10 keV = 1.3 × 1044 erg s−1, intrinsic and rest-frame) that is obscured by Compton-thick absorption (NH = 1.5 ± 0.6 × 1024 cm−2). Under standard bolometric corrections, the total measured radiative power (Lrad ∼ 4 × 1045 erg s−1) is similar to the jet kinetic power that we estimated from radio observations at 150 MHz (Pkin = 6.3 × 1045 erg s−1), in agreement with what is observed in powerful jetted AGN. Our Chandra observation is the deepest so far for a distant FRII within a galaxy overdensity. It revealed significant diffuse X-ray emission within the region that is covered by the overdensity. In particular, X-ray emission extending for ∼240 kpc is found around the eastern lobe of the FRII. Four out of the six MUSE star-forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this diffuse X-ray emission. These objects are concentrated within 200 kpc in the plane of the sky and within 450 kpc in radial separation. Three of them are even more concentrated and fall within 60 kpc in both transverse and radial distance. The probability of observing four out of the six z = 1.7 sources by chance at the edge of the diffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z = 1.7. We propose that the diffuse X-rays originate from an expanding bubble of gas that is shock heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales. We emphasize that our conclusions about the feedback are robust because even assuming that the diffuse X-ray emission arises from inverse Compton scattering of photons of the cosmic microwave background by the relativistic electrons in the radio lobe, star formation may be promoted by the nonthermal pressure of the expanding lobe.


2018 ◽  
Vol 617 ◽  
pp. A33 ◽  
Author(s):  
P. Andreani ◽  
A. Boselli ◽  
L. Ciesla ◽  
R. Vio ◽  
L. Cortese ◽  
...  

Aims.We discuss the results of the relationships between theK-band and stellar mass, FIR luminosities, star formation rate, and the masses of the dust and gas of nearby galaxies computing the bivariateK-band-luminosity function (BLF) and bivariateK-band-mass function (BMF) of theHerschelReference Survey (HRS), a volume-limited sample with full wavelength coverage.Methods.We derive the BLFs and BMFs from theK-band and stellar mass, FIR luminosities, star formation rate, dust and gas masses cumulative distributions using a copula method, which is outlined in detail. The use of the computed bivariate taking into account the upper limits allows us to derive a more solid statistical ground for the relationship between the observed physical quantities.Results.The analysis shows that the behaviour of the morphological (optically selected) subsamples is quite different. A statistically meaningful result can be obtained over the whole HRS sample only from the relationship between theK-band and the stellar mass, while for the remaining physical quantities (dust and gas masses, far-infrared luminosity, and star formation rate), the analysis is distinct for late-type (LT) and early-type galaxies (ETG). However, the number of ETGs is small to perform a robust statistical analysis, and in most of the case results are discussed only for the LTG subsample. The luminosity and mass functions (LFs, MFs) of LTGs are generally dependent on theK-band and the various dependencies are discussed in detail. We are able to derive the corresponding LFs and MFs and compare them with those computed with other samples. Our statistical analysis allows us to characterise the HRS which, although non-homogeneously selected and partially biased towards low IR luminosities, may be considered as representative of the local LT galaxy population.


2004 ◽  
Vol 217 ◽  
pp. 472-479 ◽  
Author(s):  
Wil van Breugel ◽  
Chris Fragile ◽  
Peter Anninos ◽  
Stephen Murray

Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star formation in low (‘FR-I’) and high (‘FR-II’) luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst (‘Minkowski's Object’) in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star formation in moderately dense (10 cm−3), warm (104 K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for ‘positive’ feedback from AGN in the galaxy formation process.


Sign in / Sign up

Export Citation Format

Share Document