scholarly journals V752 Cen - A triple-lined spectroscopic contact binary with sudden and continuous period changes

Author(s):  
X Zhou ◽  
B Soonthornthum ◽  
S-B Qian ◽  
E Fernández Lajús

Abstract V752 Cen is a triple-lined spectroscopic contact binary. Its multi-colour light curves were obtained in the years 1971 and 2018, independently. Photometric analyses reveal that the two sets of light curves produce almost consistent results. It contains a W-subtype totally eclipsing binary, and its mass ratio and fill-out factor are q = 3.35(1) and $f = 29(2)\, {{\ \rm per\ cent}}$. The absolute elements of its two component stars were determined to be M1 = 0.39(2)M⊙, M2 = 1.31(7)M⊙, R1 = 0.77(1)R⊙, R2 = 1.30(2)R⊙, L1 = 0.75(3)L⊙ and L2 = 2.00(7)L⊙. The period of V752 Cen is 0.37023198 day. The 0.37-d period remained constant from its first measurement in 1971 until the year 2000. However, it changed suddenly around the year 2000 and has been increasing continuously at a rate of dP/dt = +5.05 × 10−7day · year−1 since then, which can be explained by mass transfer from the less massive component star to the more massive one with a rate of $\frac{dM_{2}}{dt}=2.52\times {10^{-7}}M_\odot /year$. The period variation of V752 Cen over the 48 years in which the period has been monitored is really unusual, and is potentially related to effects from the possible presence of a nearby third star or of a pair of stars in a second binary.

2016 ◽  
Vol 1 (2) ◽  
pp. 321-334 ◽  
Author(s):  
N.S. Awadalla ◽  
M.A. Hanna ◽  
M.N. Ismail ◽  
I.A. Hassan ◽  
M.A. Elkhamisy

AbstractWe analyzed the first set of complete CCD light curves of the W UMa type eclipsing binary IK Boo in the BVRI bands by using the PHOEBE code and deduced its first photometric parameters with, mass ratio q = 0.648 and orbital inclination i = 63o. We have applied a spotted model due to the light curves asymmetry. The system shows a distinct O’Connell effect. The best solution fit to the light curves suggested the influence of star spot(s) on both components. Such presence of star spot(s) is common among the RS CVn and W UMa chromospheric active late type stars.We also present an analysis of mid–eclipse time measurements of IK Boo. The analysis indicates a period decrease rate dP/dt = −1.68 × 10−7d/yr, which can be interpreted in terms of mass transfer of rate 3.1 × 10−7M⊙/yr, from the more massive to the less massive component.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Haifeng Dai ◽  
Huiyu Yuan ◽  
Yuangui Yang

First CCD photometry for the contact binary MT Cas is performed in 2013 in December. The spectral type of F8V is determined from the low-precision spectrum observed on 2018 Oct 22. With Wilson-Devinney code, the photometric solutions are deduced from VRc light curves (LCs) and AAVSO’s and ASAS-SN’s data, respectively. The results imply that MT Cas is a W-type weak-contact binary with a mass ratio of q=2.365(±0.005) and a fill-out factor of f=16.6(±1.2)%, respectively. The asymmetric LCs in 2013 are modeled by a dark spot on the more massive component. By analyzing the (O-C) curve, it is discovered that the orbital period may be undergoing a secular increase at a rate of dP/dt=1.12(±0.09)×10-8d  yr-1, which may result from mass transfer from the less massive component to the more massive one. With mass transferring, MT Cas may evolve into a broken-contact configuration as predicted by TRO theory.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1992 ◽  
Vol 151 ◽  
pp. 379-382
Author(s):  
P.P. Rainger ◽  
S.A. Bell ◽  
R.W. Hilditch

The first infrared photometry for the W-UMa system SS Ari is presented. An analysis based on medium resolution spectroscopy presented here shows that SS Ari is a W-type system with a mass ratio of 0.33. It seems certain that the asymmetry in the published light curves and those obtained for this study can be explained by the effect of spots on one or possibly both components of the system. The precise location, size and temperature of these spots require the use of Doppler Imaging techniques in conjunction with high quality multi-band photometry.


2002 ◽  
Vol 187 ◽  
pp. 337-338
Author(s):  
A. Yamasaki ◽  
M. Takeda ◽  
T. Yamauchi ◽  
G. Takada ◽  
S. Hattori

AbstractVariability of the light curves of the short-period eclipsing binary system GR Tau (, almost-contact binary) is studied. It is found that GR Tau experienced both the state which is characterized by asymmetric light curves and the state characterized by symmetrical light curves.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Ronald G. Samec ◽  
Adam Jaso ◽  
Jesse White ◽  
Danny R. Faulkner ◽  
Nicholas Blum ◽  
...  

TYC 3034-0299-1 (CVn) is a magnetically active, contact binary, ROTSE variable. UBVRcIc light curves are presented along with a period study and a simultaneous UBVRI light curve solution. Our light curves show eclipse amplitudes of 0.72 and 0.62 mags (V) in the primary and secondary eclipses. Modeled results include a dark spot region, found at longitude 51°, a 24% Roche lobe fill-out, and a mass ratio of 0.48. A total eclipse is found to occur in the secondary eclipse making TYC 3034-0299-1 a W-type (less massive star is hotter) W UMa variable.


2007 ◽  
Vol 3 (S250) ◽  
pp. 333-338
Author(s):  
J. L. Prieto ◽  
K. Z. Stanek ◽  
C. S. Kochanek ◽  
D. R. Weisz

AbstractIn a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ≃ −7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days and the light curve is well-fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V − I ≃ 1 mag, Teff = 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however note a second example. The SMC F0 supergiant R47 is a bright (MV ≃ −7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well-fit as a contact binary with a 181 day period. We propose that these massive systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage.


Author(s):  
Xiao-Man Tian ◽  
Lin-Feng Chang

Abstract First multi-colour complete light curves and low-resolution spectra of short-period eclipsing binary TT Cet are presented. The stellar atmospheric parameters of the primary star were derived through spectra fitting as: $T_{eff}=7\,091\pm124\,{\text{K}}$ , $\log g = 4.15\pm0.33\,{\text{cm}}/\text{s}^2$ , and $[Fe/H]=-0.23\pm0.04\,\text{dex}$ . The light curves were analysed using the Wilson–Devinney code. The photometric solution suggests that this target should be a near-contact binary with the primary component filling its critical Roche lobe (i.e. SD1-type NCB). The luminosity enhancement around the primary light maximum (phase 0.10–0.40) on the light curve was detected like other SD1-type NCBs, which could be caused by a hot spot near the facing surface of the secondary component due to mass transfer. Long-term decrease of the orbital period at a rate of $dP/dt=-5.01\,({\pm}0.06)\times 10^{-8}\,{{\text{d}} \cdot{yr}}^{-1}$ was detected by the O–C analysis, which supports the mass transfer from the primary to the secondary and is consistent with its primary filling configuration. No third body was found through the light curve and O–C analysis. TT Cet may locate in the broken contact stage predicted by the thermal relaxation oscillation theory (TRO) and will evolve to the contact stage eventually. It is another good observational example supporting the TRO theory. We have collected all known SD1-type NCBs with absolute parameters from the literatures. The relations of these parameters are summarised for these rare systems.


2020 ◽  
Vol 497 (3) ◽  
pp. 3381-3392
Author(s):  
Di-Fu Guo ◽  
Kai Li ◽  
Xing Gao ◽  
Dong-Yang Gao ◽  
Zhi-Jian Xu ◽  
...  

ABSTRACT By analysing the data observed by the Comet Search Programme telescope at Xingming Observatory from 2018 October 11 to 2018 December 19, 24 eclipsing binaries were identified. By cross-matching with the VSX (AAVSO) website, we found that four binaries are newly discovered. By analysing the Transiting Exoplanet Survey Satellite (TESS) data, the light curves of 17 binaries were obtained. First photometric solutions of 23 binaries were obtained by simultaneously analysing all the light curves, except for NSVS 1908107 (first analysed by Pan et al.). Based on the photometric solutions, nine binaries belong to detached binary systems, ten binaries belong to semidetached binary systems, and five binaries belong to contact binary systems. Two W-subtype low-mass ratio contact binaries (the less massive components are hotter), with total eclipsing light curves, were identified: Mis V1395 is a deep contact binary (q = 0.150, $f=80{{\ \rm per\ cent}}$), while NSVS 1917038 is a low-mass ratio binary with an unexpectedly marginal contact degree (q = 1/6.839 = 0.146, $f=4{{\ \rm per\ cent}}$). The total eclipsing detached binary GSC 03698-00022 has an extremely low mass ratio of q = 0.085. The Algol-type binary NSVS 1908107 is also found to have an extremely low mass ratio of q = 0.081. The Algol-type binary DK Per exhibits a continuous period decrease at a rate of dP/dt = −1.26 × 10−7 d yr−1, which may result from the orbital angular momentum loss. Based on the light curves obtained from the TESS data, a pulsating binary candidate (NSVS 1913053) was found.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ronald G. Samec ◽  
Daniel Flaaten ◽  
James Kring ◽  
Danny R. Faulkner

We present the first precision UBVRcIc light curves, an initial period study, and a simultaneous light curve solution for the near-contact solar type eclipsing binary V530 And. Our observations were taken with the 0.81 m Lowell reflector on 27 and 29 September, 2011, with time being granted from the National Undergraduate Research Observatory (NURO). Our Wilson Devinney Program solution yields a semidetached, V1010 Oph configuration: the more massive component is filling its Roche lobe. The system is apparently approaching contact for the first time. It is not a classic Algol.


Sign in / Sign up

Export Citation Format

Share Document