scholarly journals Synthetic 26Al emission from galactic-scale superbubble simulations

2019 ◽  
Vol 490 (2) ◽  
pp. 1894-1912 ◽  
Author(s):  
D Rodgers-Lee ◽  
M G H Krause ◽  
J Dale ◽  
R Diehl

ABSTRACT Emission from the radioactive trace element 26Al has been observed throughout the Milky Way with the COMPTEL and INTEGRAL satellites. In particular, the Doppler shifts measured with INTEGRAL connect 26Al with superbubbles, which may guide 26Al flows off spiral arms in the direction of Galactic rotation. In order to test this paradigm, we have performed galaxy-scale simulations of superbubbles with 26Al injection in a Milky Way-type galaxy. We produce all-sky synthetic γ-ray emission maps of the simulated galaxies. We find that the 1809 keV emission from the radioactive decay of 26Al is highly variable with time and the observer’s position. This allows us to estimate an additional systematic variability of 0.2 dex for a star formation rate derived from 26Al for different times and measurement locations in Milky Way-type galaxies. High-latitude morphological features indicate nearby emission with correspondingly high-integrated γ-ray intensities. We demonstrate that the 26Al scale height from our simulated galaxies depends on the assumed halo gas density. We present the first synthetic 1809 keV longitude-velocity diagrams from 3D hydrodynamic simulations. The line-of-sight velocities for 26Al can be significantly different from the line-of-sight velocities associated with the cold gas. Over time, 26Al velocities consistent with the INTEGRAL observations, within uncertainties, appear at any given longitude, broadly supporting previous suggestions that 26Al injected into expanding superbubbles by massive stars may be responsible for the high velocities found in the INTEGRAL observations. We discuss the effect of systematically varying the location of the superbubbles relative to the spiral arms.

2017 ◽  
Vol 12 (S330) ◽  
pp. 189-192 ◽  
Author(s):  
Sara Rezaei Kh. ◽  
Coryn A. L. Bailer-Jones ◽  
Morgan Fouesneau ◽  
Richard Hanson

AbstractWe present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the “fingers of God” effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.


2020 ◽  
Vol 498 (1) ◽  
pp. 385-429 ◽  
Author(s):  
Sarah M R Jeffreson ◽  
J M Diederik Kruijssen ◽  
Benjamin W Keller ◽  
Mélanie Chevance ◽  
Simon C O Glover

ABSTRACT We examine the role of the large-scale galactic-dynamical environment in setting the properties of giant molecular clouds in Milky Way-like galaxies. We perform three high-resolution simulations of Milky Way-like discs with the moving-mesh hydrodynamics code arepo, yielding a statistical sample of ${\sim}80\, 000$ giant molecular clouds and ${\sim}55\, 000$ H i clouds. We account for the self-gravity of the gas, momentum, and thermal energy injection from supernovae and H ii regions, mass injection from stellar winds, and the non-equilibrium chemistry of hydrogen, carbon, and oxygen. By varying the external gravitational potential, we probe galactic-dynamical environments spanning an order of magnitude in the orbital angular velocity, gravitational stability, mid-plane pressure, and the gradient of the galactic rotation curve. The simulated molecular clouds are highly overdense (∼100×) and overpressured (∼25×) relative to the ambient interstellar medium. Their gravoturbulent and star-forming properties are decoupled from the dynamics of the galactic mid-plane, so that the kpc-scale star formation rate surface density is related only to the number of molecular clouds per unit area of the galactic mid-plane. Despite this, the clouds display clear, statistically significant correlations of their rotational properties with the rates of galactic shearing and gravitational free-fall. We find that galactic rotation and gravitational instability can influence their elongation, angular momenta, and tangential velocity dispersions. The lower pressures and densities of the H i clouds allow for a greater range of significant dynamical correlations, mirroring the rotational properties of the molecular clouds, while also displaying a coupling of their gravitational and turbulent properties to the galactic-dynamical environment.


2020 ◽  
Vol 642 ◽  
pp. A201 ◽  
Author(s):  
S. Reissl ◽  
J. M. Stil ◽  
E. Chen ◽  
R. G. Treß ◽  
M. C. Sormani ◽  
...  

Context. The Faraday rotation measure (RM) is often used to study the magnetic field strength and orientation within the ionized medium of the Milky Way. Recent observations indicate an RM magnitude in the spiral arms that exceeds the commonly assumed range. This raises the question of how and under what conditions spiral arms create such strong Faraday rotation. Aims. We investigate the effect of spiral arms on Galactic Faraday rotation through shock compression of the interstellar medium. It has recently been suggested that the Sagittarius spiral arm creates a strong peak in Faraday rotation where the line of sight is tangent to the arm, and that enhanced Faraday rotation follows along side lines which intersect the arm. Here our aim is to understand the physical conditions that may give rise to this effect and the role of viewing geometry. Methods. We apply a magnetohydrodynamic simulation of the multi-phase interstellar medium in a Milky Way-type spiral galaxy disk in combination with radiative transfer in order to evaluate different tracers of spiral arm structures. For observers embedded in the disk, dust intensity, synchrotron emission, and the kinematics of molecular gas observations are derived to identify which spiral arm tangents are observable. Faraday rotation measures are calculated through the disk and evaluated in the context of different observer positions. The observer’s perspectives are related to the parameters of the local bubbles surrounding the observer and their contribution to the total Faraday rotation measure along the line of sight. Results. We reproduce a scattering of tangent points for the different tracers of about 6° per spiral arm similar to the Milky Way. For the RM, the model shows that compression of the interstellar medium and associated amplification of the magnetic field in spiral arms enhances Faraday rotation by a few hundred rad m−2 in addition to the mean contribution of the disk. The arm–interarm contrast in Faraday rotation per unit distance along the line of sight is approximately ~10 in the inner Galaxy, fading to ~2 in the outer Galaxy in tandem with the waning contrast of other tracers of spiral arms. We identify a shark fin pattern in the RM Milky Way observations and in the synthetic data that is characteristic for a galaxy with spiral arms.


1989 ◽  
Vol 120 ◽  
pp. 408-415 ◽  
Author(s):  
Laura Danly ◽  
Chris Blades

Since the earliest optical absorption line studies of Munch and Zirin (1961) identified clouds of gas located at large distances from the galactic plane, considerable effort has gone into trying to understand the origin and nature of Milky Way halo gas. Subsequent high resolution optical absorption studies (Albert 1981; Blades et al 1989) have expanded on the early results, demonstrating clearly that (1) halo clouds are more likely to have velocities outside the range allowed by galactic rotation and (2) halo clouds show smaller depletion of refractory elements compared to their disk counterparts (i.e. the Spitzer-Routley effect).


2019 ◽  
Vol 486 (1) ◽  
pp. 851-867 ◽  
Author(s):  
Raniere de Menezes ◽  
Fabio Cafardo ◽  
Rodrigo Nemmen

ABSTRACT Globular clusters (GCs) are evolved stellar systems containing entire populations of millisecond pulsars (MSPs), which are efficient γ-ray emitters. Observations of this emission can be used as a powerful tool to explore the dynamical processes leading to binary system formation in GCs. In this work, 9 yr of Fermi Large-Area Telescope data were used to investigate the γ-ray emission from all GCs in the Milky Way. Twenty-three clusters were found as γ-ray bright, with two of them never having been reported before. It was also found that magnetic braking probably has a smaller impact on the formation rate of binary systems in metal-rich GCs than previously suggested, while a large value for the two-body encounter rate seems to be a necessary condition. The influence of the encounter rate per formed binary was for the first time explored in conjunction with γ-ray data, giving evidence that if this quantity is very high, binary systems will get destroyed before having time to evolve into MSPs, thus decreasing the total number of MSPs in a GC. No extended emission was found even for clusters whose optical extent is ≈0.5°; all of them are point-like sources spatially in agreement with the optical cores of the GCs, supporting previous X-ray results of heavier objects sinking into the clusters’ cores via dynamical friction. The possibility of extrapolating these results to ultra-compact dwarf galaxies is discussed, as these systems are believed to be the intermediate case between GCs and dwarf galaxies.


2016 ◽  
Vol 2 (9) ◽  
pp. e1600878 ◽  
Author(s):  
Ye Xu ◽  
Mark Reid ◽  
Thomas Dame ◽  
Karl Menten ◽  
Nobuyuki Sakai ◽  
...  

The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy’s major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms.


2014 ◽  
Vol 92 (9) ◽  
pp. 959-963 ◽  
Author(s):  
David G. Turner

The nature of our Milky Way galaxy is re-examined from an eclectic point of view. Evidence for a central bar, for example, is not reflected in the distribution of RR Lyrae variables in the central bulge (Majaess. Acta Astron. 60, 55 (2010); Dékány et al. arXiv:1309.5933. 2013), and it is not clear if either a 2-armed or 4-armed spiral pattern is appropriate for the spiral arms. Radial velocity mapping of the Galaxy using radio H I, H II, or CO observations is compromised by the assumptions adopted for simple Galactic rotation. The Sun’s local standard of rest (LSR) velocity is ∼14 km s−1 rather than 20 km s−1, the local circular velocity is 251 ± 9 km s−1 rather than 220 km s−1, and young groups of stars exhibit a 10–20 km s−1 “kick” relative to what is expected from Galactic rotation. By implication, the same may be true for star-forming gas clouds affected by the Galaxy’s spiral density wave, raising concerns about their use for mapping spiral arms. Proper motion data in conjunction with the newly-estimated velocity components for the Sun’s motion imply a distance to the Galactic centre of R0 = 8.34 ± 0.27 kpc, consistent with recent estimates, which average 8.24 ± 0.09 kpc. A cosinusoidal Galactic potential is not ruled out by observations of open star clusters. The planetary nebula cluster Bica 6, for example, has a near-escape orbit for a Newtonian potential, but a near-normal orbit in a cosinusoidal potential field. The nearby cluster Collinder 464 also displays unusually large tidal effects consistent with those expected for a cosinusoidal potential. A standard Newtonian version of the Virial theorem for star clusters yields very reasonable masses (∼3 × 1011 M⊙ and ∼4 × 1011 M⊙) for the Milky Way and M31 subgroups of the Local Group, respectively. A cosinusoidal relation should yield identical results.


1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 680
Author(s):  
Chris D. Boone ◽  
Johnathan Steffen ◽  
Jeff Crouse ◽  
Peter F. Bernath

Line-of-sight wind profiles are derived from Doppler shifts in infrared solar occultation measurements from the Atmospheric Chemistry Experiment Fourier transform spectrometers (ACE-FTS), the primary instrument on SCISAT, a satellite-based mission for monitoring the Earth’s atmosphere. Comparisons suggest a possible eastward bias from 20 m/s to 30 m/s in ACE-FTS results above 80 km relative to some datasets but no persistent bias relative to other datasets. For instruments operating in a limb geometry, looking through a wide range of altitudes, smearing of the Doppler effect along the line of sight can impact the measured signal, particularly for saturated absorption lines. Implications of Doppler effect smearing are investigated for forward model calculations and volume mixing ratio retrievals. Effects are generally small enough to be safely ignored, except for molecules having a large overhang in their volume mixing ratio profile, such as carbon monoxide.


Sign in / Sign up

Export Citation Format

Share Document