scholarly journals The dichotomy of atmospheric escape in AU Mic b

2020 ◽  
Vol 498 (1) ◽  
pp. L53-L57
Author(s):  
S Carolan ◽  
A A Vidotto ◽  
P Plavchan ◽  
C Villarreal D’Angelo ◽  
G Hazra

ABSTRACT Here, we study the dichotomy of the escaping atmosphere of the newly discovered close-in exoplanet AU Microscopii (AU Mic) b. On one hand, the high extreme-ultraviolet stellar flux is expected to cause a strong atmospheric escape in AU Mic b. On the other hand, the wind of this young star is believed to be very strong, which could reduce or even inhibit the planet’s atmospheric escape. AU Mic is thought to have a wind mass-loss rate that is up to 1000 times larger than the solar wind mass-loss rate ($\dot{\mathrm{ M}}_\odot$). To investigate this dichotomy, we perform 3D hydrodynamics simulations of the stellar wind–planetary atmosphere interactions in the AU Mic system and predict the synthetic Ly α transits of AU Mic b. We systematically vary the stellar wind mass-loss rate from a ‘no wind’ scenario to up to a stellar wind with a mass-loss rate of $1000~\dot{\mathrm{ M}}_\odot$. We find that, as the stellar wind becomes stronger, the planetary evaporation rate decreases from 6.5 × 1010  g s−1 to half this value. With a stronger stellar wind, the atmosphere is forced to occupy a smaller volume, affecting transit signatures. Our predicted Ly α absorption drops from $\sim 20{{\ \rm per\ cent}}$ in the case of ‘no wind’ to barely any Ly α absorption in the extreme stellar wind scenario. Future Ly α transits could therefore place constraints not only on the evaporation rate of AU Mic b, but also on the mass-loss rate of its host star.

2020 ◽  
Vol 500 (3) ◽  
pp. 3382-3393
Author(s):  
S Carolan ◽  
A A Vidotto ◽  
C Villarreal D’Angelo ◽  
G Hazra

ABSTRACT We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly α transits of a hot Jupiter (HJ) and a warm Neptune (WN). We find that increasing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65 per cent and 40 per cent for the HJ and WN, respectively, compared to the ‘no wind’ case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere, and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. ‘Closed’ refers to scenarios where the sonic surface is undisturbed, while ‘open’ refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly α transit in a non-linear way (note that here we do not include charge-exchange processes). Although little change is seen in planetary escape rates (≃ 5.5 × 1011 g s−1) in the closed to partially open regimes, the Ly α absorption (sum of the blue [−300, −40 km s−1] and red [40, 300 km s−1] wings) changes from 21 to 6 per cent as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of ≃ 6.5 × 1010 g s−1 can cause transit absorptions that vary from 8.8 to 3.7 per cent, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly α transits can lead to underestimation of planetary escape rates.


2020 ◽  
Vol 639 ◽  
pp. A109
Author(s):  
I. F. Shaikhislamov ◽  
L. Fossati ◽  
M. L. Khodachenko ◽  
H. Lammer ◽  
A. García Muñoz ◽  
...  

Context. π Men c is the first planet to have been discovered by the Transiting Exoplanet Survey Satellite. It orbits a bright, nearby star and has a relatively low average density, making it an excellent target for atmospheric characterisation. The existing planetary upper atmosphere models of π Men c predict significant atmospheric escape, but Lyα transit observations indicate the non-detection of hydrogen escaping from the planet. Aims. Our study is aimed at constraining the conditions of the wind and high-energy emission of the host star and reproducing the non-detection of Lyα planetary absorption. Methods. We modelled the escaping planetary atmosphere, the stellar wind, and their interaction employing a multi-fluid, three-dimensional hydrodynamic code. We assumed a planetary atmosphere composed of hydrogen and helium. We ran models varying the stellar high-energy emission and stellar mass-loss rate, and, for each case, we further computed the Lyα synthetic planetary atmospheric absorption and compared it with the observations. Results. We find that a non-detection of Lyα in absorption employing the stellar high-energy emission estimated from far-ultraviolet and X-ray data requires a stellar wind with a stellar mass-loss rate about six times lower than solar. This result is a consequence of the fact that, for π Men c, detectable Lyα absorption can be caused exclusively by energetic neutral atoms, which become more abundant with increasing velocity or density of the stellar wind. By considering, instead, that the star has a solar-like wind, the non-detection requires a stellar ionising radiation about four times higher than estimated. The reason for this is that despite the fact that a stronger stellar high-energy emission ionises hydrogen more rapidly, it also increases the upper atmosphere heating and expansion, pushing the interaction region with the stellar wind farther away from the planet, where the planet atmospheric density that remains neutral becomes smaller and the production of energetic neutral atoms less efficient. Conclusions. Comparing the results of our grid of models with what is expected and estimated for the stellar wind and high-energy emission, respectively, we support the idea that it is likely that the atmosphere of π Men c is not hydrogen-dominated. Therefore, future observations should focus on the search for planetary atmospheric absorption at the position of lines of heavier elements, such as He, C, and O.


1981 ◽  
Vol 59 ◽  
pp. 265-270
Author(s):  
L.R. Yungelson ◽  
A.G. Massevitch ◽  
A.V. Tutukov

It is shown that mass loss by stellar wind with rates observed in O, B-stars cannot change qualitatively their evolution in the core hydrogen-burning stage. The effects, that are usually attributed to the mass loss, can be explained by other causes: e.g., duplicity or enlarged chemically homogeneous stellar cores.The significance of mass loss by stellar wind for the evolution of massive stars was studied extensively by numerous authors (see e.g. Chiosi et al. (1979) and references therein). However, the problem is unclear as yet. There does not exist any satisfactory theory of mass loss by stars. Therefore one is usually forced to assume that mass loss rate depends on some input parameters.


1981 ◽  
Vol 59 ◽  
pp. 61-64
Author(s):  
B. Wolf ◽  
O. Stahl ◽  
W.J. Altenhoff

From the free-free excess at 10μ. Barlow and Cohen (1977) (hereafter referred to as BC) derived a mass loss rate of 6.9 10-7 M⊙ yr-1 for α Cyg. They predicted a 10 GHz radio flux of 2.2 mJy. On the other hand Praderie et al. (1980) derived a considerable lower mass loss rate of 1.1 10 -8 ≤Ṁ ≤ 7 10-8 M ⊙ yr-1 from a curve of growth analysis of the envelope ultraviolet Fell-lines of α Cyg. Radio observations are desirable to make a decision about these discrepant results. Therefore we observed α Cyg at 15 GHz with the 100 m telescope of the MPIfR at Effelsberg. The observations are discussed together with recent VLA data of Abbott et al. (1980).


1989 ◽  
Vol 111 ◽  
pp. 262-262
Author(s):  
Yu. A. Fadeyev ◽  
H. Muthsam

AbstractThe hydrodynamic calculations of nonlinear self-excited radial pulsations were done for the models of W Vir stars with mass 0.6 M⊙ and luminosities from 794L⊙ to 3981L⊙. The periods of the models are longer than 10 days. The pulsations are shown to be accompanied by periodic shocks that change the density distribution in the pulsating stellar atmosphere. At radii less than 5 Rph, where Rph is the radius of the photosphere, the mean dynamic scale height is nearly five times the static scale height. In this region of the atmosphere the mean radii of outer mass zones do not change perceptably. On the other hand, at radii larger than 5 Rph the scale height is of the order of Rph so that the outermost layers ultimately expand with a velocity exceeding the local escape velocity. The mass flux in the atmosphere increases with decreasing mass to radius ratio and mass loss rate in W Vir type variables is in the range from 2 X 10−6M⊙·yr−1 to 10−5M⊙·yr−1.


Author(s):  
E. S. Kalinicheva ◽  
◽  
V. I. Shematovich ◽  
Ya. N. Pavlyuchenkov ◽  
◽  
...  

In this work we present the results of the modeling of exoplanet pi Men c upper atmosphere, produced using the previously developed one-dimensional self-consistent aeronomic model. The model used takes into account the contribution of suprathermal particles, which significantly refines the heating function of the atmosphere. The hight profiles of temperature, velocity and density were obtained, the atmospheric mass-loss rate was calculated. The presence of two hight-scales in the structure of the atmosphere was found: the first corresponds to a relatively dense stationary atmosphere, the second to a more rarefied corona.


1988 ◽  
Vol 101 ◽  
pp. 15-18
Author(s):  
P. Lundqvist ◽  
C. Fransson

AbstractThe time dependent ionization and temperature structure of the circumstellar medium around supernovae has been calculated, in order to interpret recent supernova radio observations. For a stellar wind origin of the circumstellar medium, we relate the time of radio turn-on to the progenitor mass loss rate. We also show that large column densities for the UV resonance lines are expected. The results are applied to SN 1979c, SN 1980k and SN 1987A.


1982 ◽  
Vol 98 ◽  
pp. 161-165 ◽  
Author(s):  
Ryuko Hirata ◽  
Jun'ichi Katahira ◽  
Jun Jugaku

Shell spectra of Pleione in 1977–1979 are characterized by further increase in their strengths and by the development of the blue-winged profiles without noticeable variation of their radial velocities. The MgII resonance lines at λ2800A have the blue-shifted components with a velocity of-35 km/s relative to the other shell lines. The development of the shell structure is derived. The mass loss rate was 7×10−11 M⊙/yr.


2020 ◽  
Author(s):  
Aurélien Wyttenbach ◽  
Paul Mollière ◽  
David Ehrenreich ◽  
Heather Cegla ◽  
Vincent Bourrier ◽  
...  

<p>Atmospheric escape rate is a key parameter to measure in order to understand the evolution of exoplanets. In this presentation, we will show that the Balmer series, observed with high-resolution transmission spectroscopy, is a precise probe to measure exoplanet evaporation, especially for ultra hot Jupiters orbiting early-type star. These hot gaseous giant exoplanets (such as KELT-9 b) are presumed to have an atmosphere dominated by neutral and ionized atomic species. In particular, hydrogen Balmer lines have been detected in some of their upper atmospheres, suggesting that hydrogen is filling the planetary Roche lobe and escaping from these planets. Here, we will present new significant absorptions of the Balmer series in the KELT-9b atmosphere obtained with HARPS-N. The precise line shapes of the Hα, Hβ, and Hγ absorptions allow us to put constraints on the thermospheric temperature. Moreover, the mass loss rate, and the excited hydrogen population of KELT-9 b are also constrained, thanks to a retrieval analysis performed with a new atmospheric model (the PAWN model). We retrieved a thermospheric temperature of T = 13 200+800-720 K and a mass loss rate of log10(MLR) = 10^(12.8+-0.3) g/s when the atmosphere was assumed to be in hydrodynamical expansion and in local thermodynamic equilibrium (LTE). Since the thermospheres of hot Jupiters are not expected to be in LTE, we explored atmospheric structures with non-Boltzmann equilibrium for the population of the excited hydrogen. We do not find strong statistical evidence in favor of a departure from LTE. However, our non-LTE scenario suggests that a departure from the Boltzmann equilibrium may not be sufficient to explain the retrieved low number densities of the excited hydrogen. In non-LTE, Saha equilibrium departure via photo-ionization, is also likely to be necessary to explain the data.</p>


1988 ◽  
Vol 108 ◽  
pp. 148-149
Author(s):  
C. Doom

Wolf-Rayet (WR) stars are the descendants of massive stars that have lost their hydrogen rich envelope. Recently more accurate data on WR stars have become available: mass-loss rates (van der Hucht et al. 1986), radii and luminosities (Underhill 1983, Nussbaumer et al. 1982).It may therefore be worthwhile to investigate if combinations of observed parameters shed some light on the structure of the extended stellar wind of WR stars.In many WR stars the photosphere is situated in the stellar wind. We assume that the wind is stationary and isotropic. Further we assume a velocity law v(r)=v∞(1−Rs/r)β where v∞ is the terminal velocity of the wind in km/s, Rs is the radius where the wind acceleration starts and β > 0 is a free parameter. We can then easily compute the level R in the wind where the photosphere is located (de Loore et al. 1982): R is the solution of the equation 6.27 10−9 τat R v∞/ = fβ(Rs/R) where τat is the optical depth at the photosphere (2/3 or 1), (>0) is the mass loss rate in M⊙/yr and fβ > 1 is a slowly varying function (Doom 1987).


Sign in / Sign up

Export Citation Format

Share Document