scholarly journals Fitness Landscape of the Fission Yeast Genome

2019 ◽  
Vol 36 (8) ◽  
pp. 1612-1623
Author(s):  
Leanne Grech ◽  
Daniel C Jeffares ◽  
Christoph Y Sadée ◽  
María Rodríguez-López ◽  
Danny A Bitton ◽  
...  

Abstract The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66–90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3′- and 5′-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution.

2018 ◽  
Author(s):  
Leanne Grech ◽  
Daniel Charlton Jeffares ◽  
Christoph Yves Sadée ◽  
María Rodríguez-López ◽  
Danny Asher Bitton ◽  
...  

AbstractBackgroundNon-protein-coding regions of eukaryotic genomes remain poorly understood. Diversity studies, comparative genomics and biochemical outputs of genomic sites can be indicators of functional elements, but none produce fine-scale genome-wide descriptions of all functional elements.ResultsTowards the generation of a comprehensive description of functional elements in the haploid Schizosaccharomyces pombe genome, we generated transposon mutagenesis libraries to a density of one insertion per 13 nucleotides of the genome. We applied a five-state hidden Markov model (HMM) to characterise insertion-depleted regions at nucleotide-level resolution. HMM-defined functional constraint was consistent with genetic diversity, comparative genomics, gene-expression data and genome annotation.ConclusionsWe infer that transposon insertions lead to fitness consequences in 90% of the genome, including 80% of the non-protein-coding regions, reflecting the presence of numerous non-coding elements in this compact genome that have functional roles. Display of this data in genome browsers provides fine-scale views of structure-function relationships within specific genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carlos G. Acevedo-Rocha ◽  
Aitao Li ◽  
Lorenzo D’Amore ◽  
Sabrina Hoebenreich ◽  
Joaquin Sanchis ◽  
...  

AbstractMultidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and β-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.


2008 ◽  
Vol 67 (3) ◽  
pp. 266-277 ◽  
Author(s):  
Zefeng Yang ◽  
Shiliang Gu ◽  
Xuefeng Wang ◽  
Wenjuan Li ◽  
Zaixiang Tang ◽  
...  

2017 ◽  
Author(s):  
Rohan Dandage ◽  
Rajesh Pandey ◽  
Gopal Jayaraj ◽  
Kausik Chakraborty

AbstractUnder the influence of selection pressures imposed by natural environments, organisms maintain competitive fitness through underlying molecular evolution of individual genes across the genome. For molecular evolution, how multiple interdependent molecular constraints play a role in determination of fitness under different environmental conditions is largely unknown. Here, using Deep Mutational Scanning (DMS), we quantitated empirical fitness of ∼2000 single site mutants of Gentamicin-resistant gene (GmR). This enabled a systematic investigation of effects of different physical and chemical environments on the fitness landscape of the gene. Molecular constraints of the fitness landscapes seem to bear differential strengths in an environment dependent manner. Among them, conformity of the identified directionalities of the environmental selection pressures with known effects of the environments on protein folding proves that along with substrate binding, protein stability is the common strong constraint of the fitness landscape. Our study thus provides mechanistic insights into the molecular constraints that allow accessibility of mutational fates in environment dependent manner.Author SummaryEnvironmental conditions play a central role in both organismal adaptations and underlying molecular evolution. Understanding of environmental effects on evolution of genotype is still lacking a depth of mechanistic insights needed to assist much needed ability to forecast mutational fates. Here, we address this issue by culminating high throughput mutational scanning using deep sequencing. This approach allowed comprehensive mechanistic investigation of environmental effects on molecular evolution. We monitored effects of various physical and chemical environments onto single site mutants of model antibiotic resistant gene. Alongside, to get mechanistic understanding, we identified multiple molecular constraints which contribute to various degrees in determining the resulting survivabilities of mutants. Across all tested environments, we find that along with substrate binding, protein stability stands out as the common strong constraints. Remarkable direct dependence of the environmental fitness effects on the type of environmental alteration of protein folding further proves that protein stability is the major constraint of the gene. So, our findings reveal that under the influence of environmental conditions, mutational fates are channeled by various degrees of strengths of underlying molecular constraints.


Author(s):  
Takashi Makino ◽  
Aoife McLysaght

This chapter introduces evolutionary analyses of protein interaction networks and of proteins as components of the networks. The authors show relationships between proteins in the networks and their evolutionary rates. For understanding protein-protein interaction (PPI) divergence, duplicated genes are often compared because they are derived from a common ancestral gene. In order to reveal evolutionary mechanisms acting on the interactome it is necessary to compare PPIs across species. Investigation of co-localization of interacting genes in a genome shows that PPIs have an important role in the maintenance of a physical link between neighboring genes. The purpose of this chapter is to introduce methodologies for analyzing PPI data and to describe molecular evolution and comparative genomics insights gained from such studies.


2004 ◽  
Vol 53 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Jure Piškur ◽  
Rikke B. Langkjaer

Sign in / Sign up

Export Citation Format

Share Document