scholarly journals A rapid method for measuring the steady state levels of mitochondrial RNA in whole mitochondria

1992 ◽  
Vol 20 (1) ◽  
pp. 142-142 ◽  
Author(s):  
M. Guérin ◽  
P. Pélissier
2000 ◽  
Vol 20 (7) ◽  
pp. 2308-2316 ◽  
Author(s):  
Kevin T. Militello ◽  
Laurie K. Read

ABSTRACT Although primary transcripts are polycistronic in the mitochondria of Trypanosoma brucei, steady-state levels of mature, monocistronic RNAs change throughout the parasitic life cycle. This indicates that steady-state RNA abundance is controlled by posttranscriptional mechanisms involving differential RNA stability. In this study, in organello pulse-chase labeling experiments were used to analyze the stability of different T. brucei mitochondrial RNA populations. In this system, total RNA and rRNA are stable for many hours. In contrast, mRNAs can be degraded by two biochemically distinct turnover pathways. The first pathway results in the rapid degradation of mRNA (half-life [t 1/2] of 11 to 18 min) and is dependent upon the presence of an mRNA poly(A) tail. Remarkably, this pathway also requires the addition of UTP and therefore is termed UTP dependent. The second pathway results in slow turnover of mitochondrial mRNA (t 1/2 of ∼3 h) and is not dependent upon the presence of an mRNA poly(A) tail or the addition of exogenous UTP. In summary, these results demonstrate the presence of a novel, UTP-dependent degradation pathway for T. bruceimitochondrial mRNAs and reveal an unprecedented role for both UTP and mRNA polyadenylation in T. brucei mitochondrial gene expression.


1997 ◽  
Vol 52 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Antoni Barrientos ◽  
Jordi Casademont ◽  
Francesc Cardellach ◽  
Xavier Estivill ◽  
Alvaro Urbano-Marquez ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2017 ◽  
Vol 19 (6) ◽  
pp. 884-906 ◽  
Author(s):  
Viktoria C. E. Langer ◽  
Wolfgang Maennig ◽  
Felix Richter

The awarding of the Olympic Games to a certain city or the announcement of a city’s Olympic bid may be considered as a news shock that affects agents’ market expectations. A news shock implies potential impacts on the dynamic adjustment process that change not only the volatility but also the long-run steady-state levels of endogenous economic variables. In this study, we contribute to and extend previous researchers’ attempts to empirically test for the Olympic Games as a news shock by implementing full structural models and by matching Olympic hosts and bidders to structurally similar countries.


2002 ◽  
Vol 10 (2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Elaine Epperson ◽  
Sandra L. Martin

Hibernators in torpor dramatically reduce their metabolic, respiratory, and heart rates and core body temperature. These extreme physiological conditions are frequently and rapidly reversed during the winter hibernation season via endogenous mechanisms. This phenotype must derive from regulated expression of the hibernator’s genome; to identify its molecular components, a cDNA subtraction was used to enrich for seasonally upregulated mRNAs in liver of golden-mantled ground squirrels. The relative steady-state levels for seven mRNAs identified by this screen, plus five others, were measured and analyzed for seasonal and stage-specific differences using kinetic RT-PCR. Four mRNAs show seasonal upregulation in which all five winter stages differ significantly from and are higher than summer (α2-macroglobulin, apolipoprotein A1, cathepsin H, and thyroxine-binding globulin). One of these mRNAs, α2-macroglobulin, varies during the winter stages with significantly lower levels at late torpor. None of the 12 mRNAs increased during torpor. The implications for these newly recognized upregulated mRNAs for hibernation as well as more global issues of maintaining steady-state levels of mRNA during torpor are discussed.


2006 ◽  
Vol 85 (5) ◽  
pp. 452-456 ◽  
Author(s):  
M.M. Zavarella ◽  
O. Gbemi ◽  
J.D. Walters

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to manage pain and inflammatory disorders. We hypothesized that gingival fibroblasts actively accumulate NSAIDs and enhance their levels in gingival connective tissue. Using fluorescence to monitor NSAID transport, we demonstrated that cultured gingival fibroblasts transport naproxen in a saturable, temperature-dependent manner with a Km of 127 μg/mL and a Vmax of 1.42 ng/min/μg protein. At steady state, the intracellular/extracellular concentration ratio was 1.9 for naproxen and 7.2 for ibuprofen. Naproxen transport was most efficient at neutral pH and was significantly enhanced upon cell treatment with TNF-α. In humans, systemically administered naproxen attained steady-state levels of 61.9 μg/mL in blood and 9.4 μg/g in healthy gingival connective tissue, while ibuprofen attained levels of 2.3 μg/mL and 1.5 μg/g, respectively. Thus, gingival fibroblasts possess transporters for NSAIDs that are up-regulated by an inflammatory mediator, but there is no evidence that they contribute to elevated NSAID levels in healthy gingiva.


Sign in / Sign up

Export Citation Format

Share Document