scholarly journals TeamTat: a collaborative text annotation tool

2020 ◽  
Vol 48 (W1) ◽  
pp. W5-W11
Author(s):  
Rezarta Islamaj ◽  
Dongseop Kwon ◽  
Sun Kim ◽  
Zhiyong Lu

Abstract Manually annotated data is key to developing text-mining and information-extraction algorithms. However, human annotation requires considerable time, effort and expertise. Given the rapid growth of biomedical literature, it is paramount to build tools that facilitate speed and maintain expert quality. While existing text annotation tools may provide user-friendly interfaces to domain experts, limited support is available for figure display, project management, and multi-user team annotation. In response, we developed TeamTat (https://www.teamtat.org), a web-based annotation tool (local setup available), equipped to manage team annotation projects engagingly and efficiently. TeamTat is a novel tool for managing multi-user, multi-label document annotation, reflecting the entire production life cycle. Project managers can specify annotation schema for entities and relations and select annotator(s) and distribute documents anonymously to prevent bias. Document input format can be plain text, PDF or BioC (uploaded locally or automatically retrieved from PubMed/PMC), and output format is BioC with inline annotations. TeamTat displays figures from the full text for the annotator's convenience. Multiple users can work on the same document independently in their workspaces, and the team manager can track task completion. TeamTat provides corpus quality assessment via inter-annotator agreement statistics, and a user-friendly interface convenient for annotation review and inter-annotator disagreement resolution to improve corpus quality.

Author(s):  
Darshita Kumar ◽  
Kshitija Choudhari ◽  
Pooja Patel ◽  
Shambhavi Pandey ◽  
Aparna Hajare ◽  
...  

2019 ◽  
Vol 47 (W1) ◽  
pp. W594-W599 ◽  
Author(s):  
Alexis Allot ◽  
Qingyu Chen ◽  
Sun Kim ◽  
Roberto Vera Alvarez ◽  
Donald C Comeau ◽  
...  

AbstractLiterature search is a routine practice for scientific studies as new discoveries build on knowledge from the past. Current tools (e.g. PubMed, PubMed Central), however, generally require significant effort in query formulation and optimization (especially in searching the full-length articles) and do not allow direct retrieval of specific statements, which is key for tasks such as comparing/validating new findings with previous knowledge and performing evidence attribution in biocuration. Thus, we introduce LitSense, which is the first web-based system that specializes in sentence retrieval for biomedical literature. LitSense provides unified access to PubMed and PMC content with over a half-billion sentences in total. Given a query, LitSense returns best-matching sentences using both a traditional term-weighting approach that up-weights sentences that contain more of the rare terms in the user query as well as a novel neural embedding approach that enables the retrieval of semantically relevant results without explicit keyword match. LitSense provides a user-friendly interface that assists its users to quickly browse the returned sentences in context and/or further filter search results by section or publication date. LitSense also employs PubTator to highlight biomedical entities (e.g. gene/proteins) in the sentences for better result visualization. LitSense is freely available at https://www.ncbi.nlm.nih.gov/research/litsense.


2020 ◽  
Author(s):  
Xing He ◽  
Hansi Zhang ◽  
Jiang Bian

BACKGROUND One in five U.S. adults lives with some kind of mental health condition and 4.6% of all U.S. adults have a serious mental illness in 2018. The Internet has become the first place for these people to seek online mental health information for help. However, online mental health information is not well-organized and often of low quality. There have been efforts in building evidence-based mental health knowledgebases curated with information manually extracted from the high-quality scientific literature. Manual extraction is inefficient. Crowdsourcing can potentially be a low-cost mechanism to collect labeled data from non-expert laypeople. However, there is not an existing annotation tool integrated with popular crowdsourcing platforms to perform the information extraction tasks. In our previous work, we prototyped a Semantic Text Annotation Tool (STAT) to address this gap. OBJECTIVE We aimed to refine the STAT prototype (1) to improve its usability and (2) to enhance the crowdsourcing workflow efficiency to facilitate the construction of evidence-based mental health knowledgebase, following a user-centered design (UCD) process. METHODS Following UCD principles, we conducted four design iterations to improve the initial STAT prototype. In the first two iterations, usability testing focus groups were conducted internally with 8 participants recruited from a convenient sample, and the usability was evaluated with a modified System Usability Scale (SUS). In the following two iterations, usability testing was conducted externally using the Amazon Mechanical Turk (MTurk) platform. In each iteration, we summarized the usability testing results through thematic analysis, identified usability issues, and conducted a heuristic evaluation to map identified usability issues to Jakob Nielsen’s usability heuristics. We collected suggested improvements in each of the usability testing sessions and enhanced STAT accordingly in the next UCD iteration. After four UCD iterations, we conducted a case study of the system on MTurk using mental health related scientific literature. We compared the performance of crowdsourcing workers with two expert annotators from two aspects: efficiency and quality. RESULTS At the end of two initial internal UCD iterations, the SUS score increased from 70.3 ± 12.5 to 81.1 ± 9.8 after we improved STAT following the suggested improvements. We then evaluated STAT externally through MTurk in the following two iterations. The SUS score decreased to 55.7 ± 20.1 in the third iteration, probably because of the complexity of the tasks. After further simplification of STAT and the annotation tasks with an improved annotation guideline, the SUS score increased to 73.8 ± 13.8 in the fourth iteration of UCD. In the evaluation case study, on average, the workers spent 125.5 ± 69.2 seconds on the onboarding tutorial and the crowdsourcing workers spent significantly less time on the annotation tasks compared to the two experts. In terms of annotation quality, the workers’ annotation results achieved average F1-scores ranged from 0.62 to 0.84 for the different sentences. CONCLUSIONS We successfully developed a web-based semantic text annotation tool, STAT, to facilitate the curation of semantic web knowledgebases through four UCD iterations. The lessons learned from the UCD process could serve as a guide to further enhance STAT and the development and design of other crowdsourcing-based semantic text annotation tasks. Our study also showed that a well-organized, informative annotation guideline is as important as the annotation tool itself. Further, we learned that a crowdsourcing task should consist of multiple simple microtasks rather than a complicated task.


2017 ◽  
Vol 1 (1) ◽  
pp. 44-49
Author(s):  
Nur Azizah ◽  
Dedeh Supriyanti ◽  
Siti Fairuz Aminah Mustapha ◽  
Holly Yang

In a company, the process of income and expense of money must have a profit-generating goal base. The success of financial management within the company, can be monitored from the ability of the financial management in managing the finances and utilize all the opportunities that exist with as much as possible with the aim to control the company's cash (cash flow) and the impact of generating profits in accordance with expectations. With a web-based online accounting system version 2.0, companies can be given the ease to manage money in and out of the company's cash. It has a user friendly system with navigation that makes it easy for the financial management to use it. Starting from the creation of a company's cash account used as a cash account and corporate bank account on the system, deletion or filing of cash accounts, up to the transfer invoice creation feature, receive and send money. Thus, this system is very effective and efficient in the management of income and corporate cash disbursements.   Keywords:​Accounting Online System, Financial Management, Cash and Bank


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Mehmet EMIN KORTAK

This research aimed at designing and improving the web-based integrated peer and self- assessment. WesPASS (web-based peer-assessment system), developed in this research, allows students to assess their own or their peers’ performance and project assignments and to report about the result of these assessments so that they correct their assignments. This study employed design-based research. The participants included 102 fourth grade primary school students and their 4 teachers from 2 state and 2 private primary schools in Ankara, Kecioren (Turkey) who employed the system and were engaged in a questionnaire survey to assess its quality. The findings were analyzed through quantitative data analysis. The findings revealed that the system can be used by elementary school students for peer and self-assessment system. The participants stated that WesPASS is simple and user-friendly, and it accelerates the assessment process by employing information technology and allows to share opinions 


Author(s):  
Tomislav Rozman ◽  
Tanja Kocjan Stjepanovič ◽  
Andrej Raspor

The article analyzes modern cloud document management systems and communication tools from the viewpoint of a EU project managers, who lead multidisciplinary, multilingual and international teams. It also explores the types of users who use these tools as well as the motivation factors guiding their choices. The research includes observation within the project group, interviews and semi-structured surveys among 40 EU project managers, who have managed 244 EU projects. The main finding is that a lot of project managers still don't use shared, cloud document system. The biggest obstacle to more efficient usage of existing systems is their un-friendliness, security concerns and lack of skills. Meetings are still perceived as the most efficient channel for distributing and receiving project tasks, but they are closely followed by communication software. Applying the authors' findings to the project management practice can lead to better communication and shared document storage management, which can influence overall effectiveness of project management.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Julia Koblitz ◽  
Sabine Will ◽  
S. Riemer ◽  
Thomas Ulas ◽  
Meina Neumann-Schaal ◽  
...  

Genome-scale metabolic models are of high interest in a number of different research fields. Flux balance analysis (FBA) and other mathematical methods allow the prediction of the steady-state behavior of metabolic networks under different environmental conditions. However, many existing applications for flux optimizations do not provide a metabolite-centric view on fluxes. Metano is a standalone, open-source toolbox for the analysis and refinement of metabolic models. While flux distributions in metabolic networks are predominantly analyzed from a reaction-centric point of view, the Metano methods of split-ratio analysis and metabolite flux minimization also allow a metabolite-centric view on flux distributions. In addition, we present MMTB (Metano Modeling Toolbox), a web-based toolbox for metabolic modeling including a user-friendly interface to Metano methods. MMTB assists during bottom-up construction of metabolic models by integrating reaction and enzymatic annotation data from different databases. Furthermore, MMTB is especially designed for non-experienced users by providing an intuitive interface to the most commonly used modeling methods and offering novel visualizations. Additionally, MMTB allows users to upload their models, which can in turn be explored and analyzed by the community. We introduce MMTB by two use cases, involving a published model of Corynebacterium glutamicum and a newly created model of Phaeobacter inhibens.


2021 ◽  
pp. 193229682098557
Author(s):  
Alysha M. De Livera ◽  
Jonathan E. Shaw ◽  
Neale Cohen ◽  
Anne Reutens ◽  
Agus Salim

Motivation: Continuous glucose monitoring (CGM) systems are an essential part of novel technology in diabetes management and care. CGM studies have become increasingly popular among researchers, healthcare professionals, and people with diabetes due to the large amount of useful information that can be collected using CGM systems. The analysis of the data from these studies for research purposes, however, remains a challenge due to the characteristics and large volume of the data. Results: Currently, there are no publicly available interactive software applications that can perform statistical analyses and visualization of data from CGM studies. With the rapidly increasing popularity of CGM studies, such an application is becoming necessary for anyone who works with these large CGM datasets, in particular for those with little background in programming or statistics. CGMStatsAnalyser is a publicly available, user-friendly, web-based application, which can be used to interactively visualize, summarize, and statistically analyze voluminous and complex CGM datasets together with the subject characteristics with ease.


Sign in / Sign up

Export Citation Format

Share Document