scholarly journals Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes

2013 ◽  
Vol 42 (5) ◽  
pp. 3194-3206 ◽  
Author(s):  
Sahar Soltanieh ◽  
Martin Lapensée ◽  
François Dragon

AbstractDifferent pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the ‘50S’ complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome.

2014 ◽  
Vol 35 (5) ◽  
pp. 816-830 ◽  
Author(s):  
Sahar Soltanieh ◽  
Yvonne N. Osheim ◽  
Krasimir Spasov ◽  
Christian Trahan ◽  
Ann L. Beyer ◽  
...  

DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5′ end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.


2016 ◽  
Vol 36 (6) ◽  
pp. 965-978 ◽  
Author(s):  
Jieyi Zhu ◽  
Xin Liu ◽  
Margarida Anjos ◽  
Carl C. Correll ◽  
Arlen W. Johnson

In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA.DHR1can be linked toUTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activityin vitro. Moreover, theutp14mutants that mimicked a catalytically inactivedhr1mutantin vivoshowed reduced stimulation of unwinding activityin vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009215
Author(s):  
Joshua J. Black ◽  
Richa Sardana ◽  
Ezzeddine W. Elmir ◽  
Arlen W. Johnson

The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression.


2004 ◽  
Vol 15 (11) ◽  
pp. 5038-5046 ◽  
Author(s):  
Kara A. Bernstein ◽  
Susan J. Baserga

Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.


RNA ◽  
2021 ◽  
pp. rna.079025.121
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


2020 ◽  
Vol 48 (7) ◽  
pp. 3848-3868 ◽  
Author(s):  
Guillaume Clerget ◽  
Valérie Bourguignon-Igel ◽  
Nathalie Marmier-Gourrier ◽  
Nicolas Rolland ◽  
Ludivine Wacheul ◽  
...  

Abstract U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 β-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 β-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 β-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5′-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.


2008 ◽  
Vol 28 (21) ◽  
pp. 6547-6556 ◽  
Author(s):  
Erica A. Champion ◽  
Bennett H. Lane ◽  
Meredith E. Jackrel ◽  
Lynne Regan ◽  
Susan J. Baserga

ABSTRACT The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 μM.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3571-3584 ◽  
Author(s):  
S. Zaffran ◽  
A. Chartier ◽  
P. Gallant ◽  
M. Astier ◽  
N. Arquier ◽  
...  

This article describes the characterization of a new Drosophila gene that we have called pitchoune (pit) (meaning small in Provence) because mutations in this gene produce larvae that cannot grow beyond the first instar larval stage although they can live as long as 7–10 days. All the tissues are equally affected and the perfectly shaped larvae are indistinguishable from first instar wild-type animals. Analysis of mutant somatic clones suggests a function in cell growth and proliferation, which is supported by the fact that cell proliferation is promoted by pit overexpression. Tagged-Pit, when transfected in S2 cells, localizes mainly to the nucleolus, pointing towards a possible role in ribosome biogenesis and, consequently, in protein biosynthesis. pit encodes a DEAD-box RNA helicase, a family of proteins involved in the control of RNA structure in many cellular processes and its closest homologue is a human DEAD-box RNA helicase, MrDb, whose corresponding gene transcription is directly activated by Myc-Max heterodimers (Grandori, C., Mac, J., Siebelt, F., Ayer, D. E. and Eisenman, R. N. (1996) EMBO J. 15, 4344–4357). The patterns of expression of d-myc and pit are superimposable. Ectopic expression of myc in the nervous system drives an ectopic expression of pit in this tissue indicating that in Drosophila as well, pit is a potential target of d-Myc. These results suggest that myc might promote cell proliferation by activating genes that are required in protein biosynthesis, thus linking cell growth and cell proliferation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariam Jaafar ◽  
Julia Contreras ◽  
Carine Dominique ◽  
Sara Martín-Villanueva ◽  
Régine Capeyrou ◽  
...  

AbstractSynthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Sign in / Sign up

Export Citation Format

Share Document