FC 038CRESCENTS DERIVE FROM SINGLE PODOCYTE PROGENITORS AND A DRUG ENHANCING THEIR DIFFERENTIATION ATTENUATES RAPIDLY PROGRESSIVE GLOMERULONEPHRITIS

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Maria Elena Melica ◽  
Giulia Antonelli ◽  
Roberto Semeraro ◽  
Maria Lucia Angelotti ◽  
Gianmarco Lugli ◽  
...  

Abstract Background and Aims Rapidly progressive glomerulonephritis (RPGN) encompasses a group of diverse disorders characterized by the presence of massive hyperplasia of parietal epithelial cells (PEC) as the main histopathological lesion at kidney biopsy. It is associated with a rapid decline in kidney function referred to altogether as rapidly progressive glomerulonephritis. Typically, crescent formation is the consequence of diverse upstream pathomechanisms involving the specific activation of PEC. PEC normally reside peacefully along Bowman capsule and represent in part renal progenitor cells (RPC). Previous studies observed RPC markers in crescents from patients with different types of glomerulonephritis. Similarities between stem cell niches of bone marrow and kidney, prompted us to hypothesized that crescents result from monoclonal expansion of a single RPC clone conceptually similar to monoclonal diseases originating from hematopoietic stem cells. According to this analogy, we further hypothesized that drugs known to cure monoclonal disease of the hematopoietic stem cells by enforcing their terminal differentiation could also attenuate crescentic glomerulonephritis. Method To address this hypothesis, we established a RPGN disease model in a conditional transgenic mouse based on the mT/mG and the Confetti reporter that allows lineage tracing and clonal analysis of RPCs. Animals were treated with known pharmacological inhibitors of clonal stem cell proliferation in myeloproliferative disorders. Crescentic lesions were characterized by super-resolution STED microscopy. Finally, we employed single cell RNA sequencing of human renal progenitor cultures to identify the immature progenitor subset-generating crescent in human to identify putative new biomarker(s) of RPNG to validate in biopsy of patients. Results We observed that the crescentic lesions originated from the clonal expansion of single RPC, thus suggesting a clonal stem cell disorder. Therefore, we administrated a series of drugs known to ameliorates myeloproliferative neoplasms to our RPGN mouse model as potential therapeutic agents. In particular, treatment with one of the compounds induced a reduction in both proteinuria and crescent formation. 3D confocal microscopy and STED super-resolution imaging of glomeruli showed that this compound turned the uncontrolled hyperplasia of a specific immature PEC subset into a controlled differentiation into new podocytes thereby restoring the injured glomerular filtration barrier. Single cell RNA sequencing of human renal progenitor cultures identified a new marker of the crescent-generating progenitor cells. Expression of this marker in biopsies of patients with rapidly progressive glomerulonephritis associated with progression toward end stage kidney disease. Treatment of human PEC with the drug that in in vivo experiments showed a therapeutic effect on RPGN reduced proliferation of the immature progenitor subset promoting their differentiation into podocytes. Conclusion These results demonstrate that glomerular hyperplastic lesions derive from clonal amplification of a RPC subset and that shifting proliferation to podocyte differentiation reverses crescent formation and improves clinical outcome.

2021 ◽  
Vol 218 (2) ◽  
Author(s):  
Eleni Louka ◽  
Benjamin Povinelli ◽  
Alba Rodriguez-Meira ◽  
Gemma Buck ◽  
Wei Xiong Wen ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin−CD34+CD38−CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a “first hit,” (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Andrzej Eljaszewicz ◽  
Lukasz Bolkun ◽  
Kamil Grubczak ◽  
Malgorzata Rusak ◽  
Tomasz Wasiluk ◽  
...  

Background. Acute lymphoblastic leukemia (ALL) is a malignant disease of lymphoid progenitor cells. ALL chemotherapy is associated with numerous side effects including neutropenia that is routinely prevented by the administration of growth factors such as granulocyte colony-stimulating factor (G-CSF). To date, the effects of G-CSF treatment on the level of mobilization of different stem and progenitor cells in ALL patients subjected to clinically effective chemotherapy have not been fully elucidated. Therefore, in this study we aimed to assess the effect of administration of G-CSF to ALL patients on mobilization of other than hematopoietic stem cell (HSCs) subsets, namely, very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPCs), and different monocyte subsets. Methods. We used multicolor flow cytometry to quantitate numbers of CD34+ cells, hematopoietic stem cells (HSCs), VSELs, EPCs, and different monocyte subsets in the peripheral blood of ALL patients and normal age-matched blood donors. Results. We showed that ALL patients following chemotherapy, when compared to healthy donors, presented with significantly lower numbers of CD34+ cells, HSCs, VSELs, and CD14+ monocytes, but not EPCs. Moreover, we found that G-CSF administration induced effective mobilization of all the abovementioned progenitor and stem cell subsets with high regenerative and proangiogenic potential. Conclusion. These findings contribute to better understanding the beneficial clinical effect of G-CSF administration in ALL patients following successful chemotherapy.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4674-4680 ◽  
Author(s):  
P Mauch ◽  
C Lamont ◽  
TY Neben ◽  
C Quinto ◽  
SJ Goldman ◽  
...  

Peripheral blood stem cells and progenitor cells, collected during recovery from exposure to cytotoxic agents or after cytokine administration, are being increasingly used in clinical bone marrow transplantation. To determine factors important for mobilization of both primitive stem cells and progenitor cells to the blood, we studied the blood and splenic and marrow compartments of intact and splenectomized mice after administration of recombinant human interleukin-11 (rhlL-11), recombinant rat stem cell factor (rrSCF), and IL-11 + SCF. IL-11 administration increased the number of spleen colony- forming units (CFU-S) in both the spleen and blood, but did not increase blood long-term marrow-repopulating ability (LTRA) in intact or splenectomized mice. SCF administration increased the number of CFU- S in both the spleen and blood and did not increase the blood or splenic LTRA of intact mice, but did increase blood LTRA to normal marrow levels in splenectomized mice. The combination of lL-11 + SCF syngeristically enhanced mobilization of long-term marrow-repopulating cells from the marrow to the spleen of intact mice and from the marrow to the blood of splenectomized mice. These data, combined with those of prior studies showing granulocyte colony-stimulating factor mobilization of long-term marrow repopulating cells from the marrow to the blood of mice with intact spleens, suggest different cytokine- induced pathways for mobilization of primitive stem cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1449-1449
Author(s):  
Naoya Uchida ◽  
Aylin Bonifacino ◽  
Allen E Krouse ◽  
Sandra D Price ◽  
Ross M Fasano ◽  
...  

Abstract Abstract 1449 Granulocyte colony-stimulating factor (G-CSF) in combination with plerixafor (AMD3100) produces significant mobilization of peripheral blood stem cells in the rhesus macaque model. The CD34+ cell population mobilized possesses a unique gene expression profile, suggesting a different proportion of progenitor/stem cells. To evaluate whether these CD34+ cells can stably reconstitute blood cells, we performed hematopoietic stem cell transplantation using G-CSF and plerixafor-mobilized rhesus CD34+ cells that were transduced with chimeric HIV1-based lentiviral vector including the SIV-capsid (χHIV vector). In our experiments, G-CSF and plerixafor mobilization (N=3) yielded a 2-fold higher CD34+ cell number, compared to that observed for G-CSF and stem cell factor (SCF) combination (N=5) (8.6 ± 1.8 × 107 vs. 3.6 ± 0.5 × 107, p<0.01). Transduction rates with χHIV vector, however, were 4-fold lower in G-CSF and plerixafor-mobilized CD34+ cells, compared to G-CSF and SCF (13 ± 4% vs. 57 ± 5%, p<0.01). CD123+ (IL3 receptor) rates were higher in CD34+ cells mobilized by G-CSF and plerixafor (16.4%) or plerixafor alone (21.3%), when compared to G-CSF alone (2.6%). To determine their repopulating ability, G-CSF and plerixafor-mobilized CD34+ cells were transduced with EGFP-expressing χHIV vector at MOI 50 and transplanted into lethally-irradiated rhesus macaques (N=3). Blood counts and transgene expression levels were followed for more than one year. Animals transplanted with G-CSF and plerixafor-mobilized cells showed engraftment of all lineages and earlier recovery of lymphocytes, compared to animals who received G-CSF and SCF-mobilized grafts (1200 ± 300/μl vs. 3300 ± 900/μl on day 30, p<0.05). One month after transplantation, there was a transient development of a skin rash, cold agglutinin reaction, and IgG and IgM type plasma paraproteins in one of the three animals transplanted with G-CSF and plerixafor cells. This animal had the most rapid lymphocyte recovery. These data suggested that G-CSF and plerixafor-mobilized CD34+ cells contained an increased amount of early lymphoid progenitor cells, compared to those arising from the G-CSF and SCF mobilization. One year after transplantation, transgene expression levels were 2–5% in the first animal, 2–5% in the second animal, and 5–10% in the third animal in all lineage cells. These data indicated G-CSF and plerixafor-mobilized CD34+ cells could stably reconstitute peripheral blood in the rhesus macaque. Next, we evaluated the correlation of transgene expression levels between in vitro bulk CD34+ cells and lymphocytes at one month, three months, and six months post-transplantation. At one and three months after transplantation, data from G-CSF and plerixafor mobilization showed higher ratio of %EGFP in lymphocytes to that of in vitro CD34+ cells when compared to that of G-CSF and SCF mobilization. At six months after transplantation the ratios were similar. These results again suggest that G-CSF and plerixafor-mobilized CD34+ cells might include a larger proportion of early lymphoid progenitor cells when compared to G-CSF and SCF mobilization. In summary, G-CSF and plerixafor mobilization increased CD34+ cell numbers. G-CSF and plerixafor-mobilized CD34+ cells contained an increased number of lymphoid progenitor cells and a hematopoietic stem cell population that was capable of reconstituting blood cells as demonstrated by earlier lymphoid recovery and stable multilineage transgene expression in vivo, respectively. Our findings should impact the development of new clinical mobilization protocols. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2743-2743 ◽  
Author(s):  
Vivian G. Oehler ◽  
Roland B. Walter ◽  
Carrie Cummings ◽  
Olga Sala-Torra ◽  
Derek L. Stirewalt ◽  
...  

Abstract Abstract 2743 CD52 is a cell surface glycoprotein of unknown function that is expressed in B and T lymphocytes, macrophages, and monocytes, but is not expressed in normal hematopoietic stem/progenitor cells. CD52 is also expressed in chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia (ALL), and some cases of T-ALL. Alemtuzumab, a recombinant humanized monoclonal antibody, targets CD52 and is used to treat CLL. In contrast to normal hematopoietic stem/progenitor cells, CD52 expression has been described in acute myeloid leukemia (AML) and in blast crisis (BC) chronic myeloid leukemia (CML). Based on these observations we were curious whether CD52 expression distinguished normal from malignant or more mature from immature stem/progenitors cells, and whether these cells were sensitive to alemtuzumab. CD52 expression was examined in three blast cell populations (CD34+/CD38-, CD34+/CD38+, and CD34-) in patients with myeloid (44) and lymphoid (18) neoplasms, and normal patients (6). In normal hematopoietic cells, stems cells are enriched in the first population; more mature cells are characterized by increasing CD38 expression and loss of CD34 expression. In AML and CML leukemia stem cells may arise within either CD34+ population and possibly in the CD34- population. Relative to normal lymphocytes average CD52 expression could be characterized as low to moderate. Using an expression cutoff of > 20%, in contrast to normal patients, CD52 was detected in at least one of three blast populations in almost all patients. Using a more stringent cutoff of > 50%, CD52 was expressed in CD34+/CD38- cells in 7/11 B-ALL and 6/7 T-ALL cases and was concordantly expressed in the other two populations. Using the same criteria in myeloid malignancies (Table 1), expression occurred more frequently in AML, AML arising from myelodysplastic syndrome (MDS), and BC CML. In AML and AML arising from MDS, CD52 was expressed in the 34+/38- population in 7/15 cases (47%) and 4/7 cases (57%), respectively; it was expressed in both BC CML patients. In AML and BC CML patients, CD52 was expressed at similar levels in the CD34+/CD38+ fraction. No clear association between CD52 expression and cytogenetic abnormalities was found. We then examined whether CD52 expression differentiated normal from malignant blasts (CD34+/CD38- and CD34+/CD38+) in two CML myeloid BC patients. FISH and quantitative PCR demonstrated that BCR-ABL was expressed in all 4 populations, which were also morphologically distinct. Colony forming unit (CFU) assays demonstrated a significantly decreased ability to form CFU (on average 5–20 fold decrease) in CD52+/CD34+/CD38- CML cells suggesting CD52 cells may be more mature. Lastly and not previously described, we found that several BC CML cell lines express CD52, and complement-mediated cell cytotoxicity was similar in the highest expressing cell lines to that seen in EHEB (B-CLL) cells known to be targeted by alemtuzumab. Thus, alemtuzumab may have clinical efficacy in BC CML. In conclusion, CD52 is expressed on blast populations enriched for leukemic stem cells. Whether the absence or presence of CD52 more precisely segregates a leukemia stem cell containing population currently remains unknown and requires functional testing in a murine model. Our preliminary experiments in CML suggest CD52 may not differentiate between normal and malignant stem/progenitor cells. However, CD52 expression may distinguish normal and malignant stem cell populations in cases where CD52 and CD38 are more highly expressed. The observation that CD52 expression is increased in acute vs. chronic leukemias raises the intriguing possibility that CD52, if not directly involved, may be a marker for genes or pathways contributing to the block in differentiation seen with progression to acute leukemia. Furthermore, given that CD52 expression is heterogeneous in chronic disorders, it is possible that CD52 expression within these populations may correlate with poor prognosis or impending leukemic conversion. Table 1. The proportion of patients (44) expressing CD52 at levels > 50% in 3 blast populations. Three populations were present in most, but not all patients. Gray shading indicates chronic myeloid diseases. MPN is myeloproliferative neoplasm; NOS is not otherwise specified; ET is essential thrombocythemia; CMML is chronic myelomonocytic leukemia; and an arrow represents progressed to. Disclosure: Oehler: Pfizer: Research Funding. Radich:Novartis: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3764-3764
Author(s):  
Patali S Cheruku ◽  
Marina Bousquet ◽  
Guoqing Zhang ◽  
Guangtao Ge ◽  
Wei Ying ◽  
...  

Abstract Leukemic stem cells (LSCs) are derived from hematopoietic stem or progenitor cells and often share gene expression patterns and specific pathways. Characterization and mechanistic studies of LSCs are critical as they are responsible for the initiation and potential relapse of leukemias, however the overall framework, including epigenetic regulation, is not yet clear. We previously identified microRNA-150 (miR-150) as a critical regulator of mixed lineage leukemia (MLL) -associated leukemias by targeting oncogenes. Our additional results suggest that miR-150 can inhibit LSC survival and disease initiating capacity by suppressing more than 30% of “stem cell signature genes,” hence altering multiple cancer pathways and/or stem cell identities. MLL-AF9 cells derived from miR-150 deficient hematopoietic stem/progenitor cells displayed significant proliferating advantage and enhanced leukemic colony formation. Whereas, with ectopic miR-150 expression, the MLL-AF9 associated LSC population (defined as Lin-ckit+sca1- cells) was significantly decreased in culture. This is further confirmed by decreased blast leukemic colony formation in vitro. Furthermore, restoration of miR-150 levels in transformed MLL-AF9 cells, which often display loss of miR-150 expression in AML patients with MLL-fusion protein expressing, completely blocked the myeloid leukemia development in a transplantation mouse model. Gene profiling analysis demonstrated that an increased level of miR-150 expression down regulates 30 of 114 stem cell signature genes by more than 1.5 fold, partially mediated by the suppressive effects of miR-150 on CBL, c-Myb and Egr2 oncogenes. In conclusion, our results suggest that miR-150 is a potent MLL-AF9 leukemic inhibitor that may act by suppressing the survival and leukemic initiating potency of MLL-AF9 LSCs. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 49 (3) ◽  
pp. 235-247
Author(s):  
Hayam Abdel Meguid El Aggan ◽  
Mona Abdel Kader Salem ◽  
Nahla Mohamed Gamal Farahat ◽  
Ahmad Fathy El-Koraie ◽  
Ghaly Abd Al-Rahim Mohammed Kotb

Blood ◽  
2015 ◽  
Vol 125 (12) ◽  
pp. 1890-1900 ◽  
Author(s):  
Sarah A. Kinkel ◽  
Roman Galeev ◽  
Christoffer Flensburg ◽  
Andrew Keniry ◽  
Kelsey Breslin ◽  
...  

Key Points Depletion of Jarid2 in mouse and human hematopoietic stem cells enhances their activity. Jarid2 acts as part of PRC2 in hematopoietic stem and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document