scholarly journals SP161CCN2 GENE BLOCKADE IN VIVO AMELIORATES EXPERIMENTAL ACUTE RENAL INJURY

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii158-iii158
Author(s):  
Sandra Rayego-Mateos ◽  
Jose Luis Morgado-Pascual ◽  
Roel Goldschmeding ◽  
Ana Belen Sanz ◽  
Jesus Egido de los Rios ◽  
...  
2020 ◽  
pp. 096032712095215
Author(s):  
X Luo ◽  
L Zhang ◽  
G-D Han ◽  
P Lu ◽  
Y Zhang

Objective: To explore the potential function of MDM2-mediated Notch/hes1 signaling pathway in cisplatin-induced renal injury. Methods: The acute renal injury models of mice after intraperitoneal injection of cisplatin in vivo, and the apoptotic models of human renal tubular epithelial (HK-2) cells induced by cisplatin in vitro, were conducted respectively. The renal function-related parameters were measured. The renal tissue pathological changes and apoptosis were observed by PAS staining and TUNEL staining, respectively. Cell viability and apoptosis were detected by MTT and flow cytometry. Notch/hes1 pathway-related proteins were tested by Western blotting. Results: After mice injected by cisplatin, the levels of Cr, BUN, urine cystatin C, urine NGAL and urine ACR were increased and GFR was decreased with the elevation of renal tubular injury scores, the upregulation of the expressions of MDM2, N1ICD, Hes1 and Cleaved caspase-3, as well as the enhancement of cell apoptosis accompanying decreased ratio of Bcl-2/Bax. However, these cisplatin-induced renal injuries of mice have been improved by MDM2 inhibition. Besides, the declined viability, increased cytotoxicity, and enhanced apoptosis were observed in cisplatin-induced HK-2 cells, with the activated Notch/hes1 pathway. Notably, the phenomenon was alleviated in cisplatin-induced HK-2 cells transfected with MDM2 shRNA, but was severer in those co-treated with AdMDM2. Moreover, Notch1 siRNA can reverse the injury of AdMDM2 on HK-2 cells. Conclusion: Inhibiting MDM2 could reduce cell apoptosis through blocking Notch/hes1 signaling pathway, thus alleviating the acute renal injury caused by cisplatin.


2005 ◽  
Vol 289 (1) ◽  
pp. F166-F174 ◽  
Author(s):  
Ganesan Ramesh ◽  
W. Brian Reeves

Cisplatin is an important chemotherapeutic agent but can cause acute renal injury. Part of this acute renal injury is mediated through tumor necrosis factor-α (TNF-α). The pathway through which cisplatin mediates the production of TNF-α and injury is not known. Cisplatin activates p38 MAPK and induces apoptosis in cancer cells. p38 MAPK activation leads to increased production of TNF-α in ischemic injury and in macrophages. However, little is known concerning the role of p38 MAPK in cisplatin-induced renal injury. Therefore, we examined the effect of cisplatin on p38 MAPK activity and the role of p38 MAPK in mediating cisplatin-induced TNF-α production and renal injury. In vitro, cisplatin caused a dose-dependent activation of p38 MAPK in proximal tubule cells. Inhibition of p38 MAPK activation led to inhibition of TNF-α production. In vivo, mice treated with a single dose of cisplatin (20 mg/kg body wt) developed severe renal dysfunction at 72 h [blood urea nitrogen (BUN): 154 ± 34 mg/dl, creatinine: 1.4 ± 0.4 mg/dl], which was accompanied by an increase in kidney p38 MAPK activity and an increase in infiltrating leukocytes. However, animals treated with the p38 MAPK inhibitor SKF-86002 along with cisplatin showed less renal dysfunction (BUN: 55 ± 14 mg/dl, creatinine: 0.3 ± 0.02 mg/dl, P < 0.05), less severe histological damage, and fewer leukocytes compared with cisplatin+vehicle-treated animals. Serum levels of TNF-α, sTNFRI, and sTNFRII also increased significantly in cisplatin-treated mice compared with SKF-86002-treated mice ( P < 0.05). Kidney mRNA levels of TNF-α were significantly increased in cisplatin-treated mice compared with either SKF-86002- or saline-treated animals. The hydroxyl radical scavenger DMTU (100 mg·kg body wt−1·day−1) prevented the activation of p38 MAPK by cisplatin both in vitro and in vivo. DMTU also completely prevented cisplatin-induced renal injury (BUN: 140 ± 27 vs. 22 ± 2 mg/dl, P < 0.005) and the increase in serum TNF-α (33 ± 7 vs. 4 ± 2 pg/ml, P < 0.005) and kidney TNF-α mRNA in vivo. We conclude that hydroxyl radicals, either directly or indirectly, activate p38 MAPK and that p38 MAPK plays an important role in mediating cisplatin-induced acute renal injury and inflammation, perhaps through production of TNF-α.


2013 ◽  
Vol 5 (4) ◽  
pp. 2012-2018 ◽  
Author(s):  
Qiong-ming Xu ◽  
Dan Jia ◽  
Hong-wei Gao ◽  
Miao-miao Zhang ◽  
Wen-jun He ◽  
...  

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Liu Tongqiang ◽  
Liu Shaopeng ◽  
Yu Xiaofang ◽  
Song Nana ◽  
Xu Xialian ◽  
...  

Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.


Sign in / Sign up

Export Citation Format

Share Document