scholarly journals EPCT-03. SERIAL PLASMA AND CSF CELL-FREE TUMOR DNA (CF-TDNA) TRACKING IN DIFFUSE MIDLINE GLIOMA PATIENTS UNDERGOING TREATMENT WITH ONC201

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i46-i47
Author(s):  
Evan Cantor ◽  
Kyle Wierzbicki ◽  
Rohinton S Tarapore ◽  
Chase Thomas ◽  
Rodrigo Cartaxo ◽  
...  

Abstract Diffuse midline glioma (DMG) with the H3K27M mutation is a lethal childhood brain cancer, with patients rarely surviving 2 years from diagnosis. We conducted a multi-site Phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients enrolled on Arm D of the trial (n=24) underwent serial lumbar puncture (baseline, 2, 6 months) for cell-free tumor DNA (cf-tDNA) analysis at time of MRI. Additionally, patients on all arms of the trial at the University of Michigan underwent serial plasma collection. CSF collection was feasible in this cohort, with no procedural complications. We collected 96 plasma samples and 53 CSF samples from 29 patients, including those with H3F3A (H3.3) (n=13), HIST13HB (H3.1) (n= 4), and unknown H3 status/not biopsied (n=12) [range of 0–8 CSF samples and 0–10 plasma samples]. We performed digital droplet polymerase chain reaction (ddPCR) analysis and/or amplicon-based electronic sequencing (Oxford Nanopore) of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal 2D tumor area on MRI). Preliminary analysis of samples demonstrates a correlation between changes in tumor size and H3K27M cf-tDNA VAF, when removing samples with concurrent bevacizumab. In multiple cases, early reduction in CSF cf-tDNA predicts long-term clinical response (>1 year) to ONC201, and does not increase in cases of later-defined pseudo-progression (radiation necrosis). For example, a now 9-year old patient with thalamic H3K27M-mutant DMG underwent treatment with ONC201 after initial radiation and developed increase in tumor size at 4 months post-radiation (124% baseline) of unclear etiology at the time. Meanwhile, her ddPCR declined from baseline 6.76% VAF to <1%, which has persisted, with now near complete response (15% tumor reduction) at 30 months on treatment from diagnosis. In summary, we present the feasibility and utility of serial CSF/plasma monitoring of a promising experimental therapy for DMG.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2012-2012
Author(s):  
Evan Cantor ◽  
Kyle Wierzbicki ◽  
Rohinton Tarapore ◽  
Chase Thomas ◽  
Rodrigo Cartaxo ◽  
...  

2012 Background: Diffuse midline glioma (DMG) with the H3K27M mutation is a lethal childhood brain cancer, with patients rarely surviving 2 years from diagnosis. There are few available means of monitoring the disease beyond serial MRI scans, making clinical decision making slow, difficult, and often reactive. Methods: We conducted a multi-site phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients enrolled on Arm D of the trial (n=24) underwent serial lumbar puncture (baseline, 2 and 6 months) for cell-free tumor DNA (cf-tDNA) analysis at time of MRI. Additionally, patients on all arms of the trial at the University of Michigan underwent serial plasma collection. CSF collection was feasible in this cohort, with no procedural complications. We collected a total of 96 plasma samples and 53 CSF samples from 29 patients, including those with H3F3A (H3.3) (n=13), HIST13HB (H3.1) (n= 4), and unknown H3 status/not biopsied (n=12) [range of 0-8 CSF samples and 0-10 plasma samples]. We performed digital droplet polymerase chain reaction (ddPCR) analysis and/or amplicon-based electronic sequencing (Oxford Nanopore) of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal 2D tumor area on MRI). Results: Preliminary analysis of samples (n=58) demonstrates a correlation between changes in tumor size and H3K27M cf-tDNA VAF, when removing samples with concurrent bevacizumab. Analysis of remaining CSF and plasma samples is ongoing, including analysis of novel biomarkers of response. In multiple cases, early reduction in CSF cf-tDNA predicts long-term clinical response (>1 year) to ONC201 and does not increase in cases of later-defined pseudo-progression (radiation necrosis). For example, a now 9-year old patient with thalamic H3K27M-mutant DMG underwent treatment with ONC201 after initial radiation and developed an increase in tumor size at 4 months post-radiation (124% baseline) of unclear etiology at the time. Meanwhile, her ddPCR declined from baseline 6.76% VAF to <1%, which has persisted, with now near complete response (85% tumor reduction) at 30 months on treatment from diagnosis. Conclusions: In summary, we present the feasibility and utility of serial CSF/plasma monitoring of a promising experimental therapy for DMG.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi16-vi17
Author(s):  
Evan Cantor ◽  
Kyle Wierzbicki ◽  
Rohinton Tarapore ◽  
Karthik Ravi ◽  
Jack Wadden ◽  
...  

Abstract Diffuse midline glioma (DMG) with H3K27M mutation is a lethal childhood brain cancer, with limited means of monitoring beyond serial MRI scans. We conducted a multi-site Phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients on Arm D of the trial (n=24) underwent serial lumbar puncture (baseline, 2 and 6-months) for cell-free tumor DNA (cf-tDNA) analysis at time of MRI. Additionally, patients on all arms of the trial at the University of Michigan underwent serial plasma collection. We collected a total of 96 plasma-samples and 53 CSF-samples from 29 patients. We performed ddPCR analysis of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal tumor area on MRI). For our H3F3A-mutated (K27M) patients, cf-tDNA was positive in 53/62 plasma samples (sensitivity 85.4%) and 28/29 CSF samples (sensitivity 96.5%) and overall specificity of 100%. There was no direct correlation between percent-change in tumor-area and plasma (p=0.47) or CSF VAF (p=0.89), implying that VAF provided information supplemental to radiographic assessments. “Spikes” in plasma cf-tDNA VAF (increase of ≥25%) co-occurred with progression in 2/9 (22%) cases and preceded progression in 5/9 cases (55%) by an average of 1.22 months. In CSF, spikes preceded progression in 4/6 cases (66%) by an average of 1.8 months. Two patients had increases in tumor-area with no increase in plasma VAF; both were later confirmed as pseudo-progressors, suggesting additional potential utility of cf-tDNA VAF monitoring. A 14yo male with spinal cord glioma received concurrent bevacizumab with ONC201, which resulted in a decrease in tumor area but continued increase in plasma VAF, predicting radiologic progression at the next time. In summary, we present data which suggests monitoring serial CSF/plasma H3K27M tDNA is a promising clinical tool. Changes in cf-tDNAVAF over time appear to correlate with response, predict progression, and differentiate pseudo-progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Yu Yao ◽  
Yaping Xu ◽  
Lifeng Li ◽  
Yan Gong ◽  
...  

AbstractCirculating tumor DNA (ctDNA) provides a noninvasive approach to elucidate a patient’s genomic landscape and actionable information. Here, we design a ctDNA-based study of over 10,000 pan-cancer Chinese patients. Using parallel sequencing between plasma and white blood cells, 14% of plasma cell-free DNA samples contain clonal hematopoiesis (CH) variants, for which detectability increases with age. After eliminating CH variants, ctDNA is detected in 73.5% of plasma samples, with small cell lung cancer (91.1%) and prostate cancer (87.9%) showing the highest detectability. The landscape of putative driver genes revealed by ctDNA profiling is similar to that in a tissue-based database (R2 = 0.87, p < 0.001) but also shows some discrepancies, such as higher EGFR (44.8% versus 25.2%) and lower KRAS (6.8% versus 27.2%) frequencies in non-small cell lung cancer, and a higher TP53 frequency in hepatocellular carcinoma (53.1% versus 28.6%). Up to 41.2% of plasma samples harbor drug-sensitive alterations. These findings may be helpful for identifying therapeutic targets and combined treatment strategies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Weiwei Feng ◽  
Nan Jia ◽  
Haining Jiao ◽  
Jun Chen ◽  
Yan Chen ◽  
...  

Abstract Background Currently, there is no reliable blood-based marker to track tumor recurrence in endometrial cancer (EC) patients. Liquid biopsies, specifically, circulating tumor DNA (ctDNA) analysis emerged as a way to monitor tumor metastasis. The objective of this study was to examine the feasibility of ctDNA in recurrence surveillance and prognostic evaluation of high-risk EC. Methods Tumor tissues from nine high-risk EC patients were collected during primary surgery and tumor DNA was subjected to next generation sequencing to obtain the initial mutation spectrum using a 78 cancer-associated gene panel. Baseline and serial post-operative plasma samples were collected and droplet digital PCR (ddPCR) assays for patient-specific mutations were developed to track the mutations in the ctDNA in serial plasma samples. Log-rank test was used to assess the association between detection of ctDNA before or after surgery and disease-free survival. Results Somatic mutations were identified in all of the cases. The most frequent mutated genes were PTEN, FAT4, ARID1A, TP53, ZFHX3, ATM, and FBXW7. For each patient, personalized ddPCR assays were designed for one-to-three high-frequent mutations. DdPCR analysis and tumor panel sequencing had a high level of agreement in the assessment of the mutant allele fractions in baseline tumor tissue DNA. CtDNA was detected in 67% (6 of 9) of baseline plasma samples, which was not predictive of disease-free survival (DFS). CtDNA was detected in serial post-operative plasma samples (ctDNA tracking) of 44% (4 of 9) of the patients, which predicted tumor relapse. The DFS was a median of 9 months (ctDNA detected) versus median DFS undefined (ctDNA not detected), with a hazard ratio of 17.43 (95% CI, 1.616–188.3). The sensitivity of post-operative ctDNA detection in estimating tumor relapse was 100% and specificity was 83.3%, which was superior to CA125 or HE4. Conclusions Personalized ctDNA detection was effective and stable for high-risk EC. CtDNA tracking in post-operative plasma is valuable for predicting tumor recurrence.


2016 ◽  
Vol 62 (11) ◽  
pp. 1482-1491 ◽  
Author(s):  
Nora Brychta ◽  
Thomas Krahn ◽  
Oliver von Ahsen

Abstract BACKGROUND Since surgical removal remains the only cure for pancreatic cancer, early detection is of utmost importance. Circulating biomarkers have potential as diagnostic tool for pancreatic cancer, which typically causes clinical symptoms only in advanced stage. Because of their high prevalence in pancreatic cancer, KRAS proto-oncogene, GTPase [KRAS (previous name: Kirsten rat sarcoma viral oncogene homolog)] mutations may be used to identify tumor-derived circulating plasma DNA. Here we tested the diagnostic sensitivity of chip based digital PCR for the detection of KRAS mutations in circulating tumor DNA (ctDNA) in early stage pancreatic cancer. METHODS We analyzed matched plasma (2 mL) and tumor samples from 50 patients with pancreatic cancer. Early stages (I and II) were predominant (41/50) in this cohort. DNA was extracted from tumor and plasma samples and tested for the common codon 12 mutations G12D, G12V, and G12C by chip-based digital PCR. RESULTS We identified KRAS mutations in 72% of the tumors. 44% of the tumors were positive for G12D, 20% for G12V, and 10% for G12C. One tumor was positive for G12D and G12V. Analysis of the mutations in matched plasma samples revealed detection rates of 36% for G12D, 50% for G12V, and 0% for G12C. The detection appeared to be correlated with total number of tumor cells in the primary tumor. No KRAS mutations were detected in 20 samples of healthy control plasma. CONCLUSIONS Our results support further evaluation of tumor specific mutations as early diagnostic biomarkers using plasma samples as liquid biopsy.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii11-ii11
Author(s):  
Rohinton S Tarapore ◽  
Amanda Field ◽  
D Ashley Hill ◽  
Joshua Allen

Abstract Diffuse midline glioma, H3 K27M-mutant (DMG) is a 2016 WHO Grade IV glioma that has no established treatment beyond first-line radiation. ONC201 is an investigational small molecule that has been shown to be clinically active in recurrent DMG clinical trials. While biopsies of DMG are sometimes feasible, many patients defer secondary to complication risk. MR scans have many limitations in monitoring DMG progression, including distinguishing pseudoprogression and pseudoresponse and measuring diffuse lesions that often do not contrast enhance. Digital droplet PCR (ddPCR) is capable of sensitively detecting and quantifying the allelic frequency of circulating-tumor DNA (ctDNA) fragments against a backdrop of non-tumor DNA. Using sequence-specific probes for H3F3A (H3.3 K27M) and HIST1H3B (H3.1 K27M) ddPCR detects very low frequency variants and provides an assessment of mutational burden. A pilot cohort of 5 patients treated with ONC201 who had a range of outcomes were assessed with serial ctDNA analyses. Two patients with immediately progressive disease had a concordant H3 K27M ctDNA increase that precedes radiographic detection by 4 weeks. Two patients with &gt;50% tumor regressions while on ONC201 had concordant H3 K27M ctDNA burden at the onset of response and subsequent radiographic progression was preceded by increases in ctDNA 8–16 weeks prior. One patient who had prolonged stable disease had decreased H3 K27M ctDNA burden over time. Upon radiographic progression, the addition of bevacizumab with ONC201 caused a radiographic pseudoresponse, however H3 K27M ctDNA remained stable. These pilot results suggest H3 K27M ctDNA may be a sensitive and accurate biomarker of disease burden. Longitudinal evaluation of H3 K27M ctDNA in a cohort of 34 recurrent contrast-enhancing H3 K27M-mutant glioma patients while on ONC201 will be reported. Primary tumor locations range across the thalamus, cerebellum, basal ganglia, temporal lobe, and midbrain; median age is 31 years old (range 20–70).


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8037-8037
Author(s):  
Roman Hajek ◽  
Luděk Pour ◽  
Miquel Granell ◽  
Vladimir Maisnar ◽  
Paul G. Richardson ◽  
...  

8037 Background: Development of resistance to standard treatments for RRMM highlights the need for novel therapies. Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate (PDC) that leverages aminopeptidases and rapidly releases alkylating agents inside tumor cells. Melflufen + dex showed clinical activity and an acceptable safety profile in HORIZON (Richardson et al. J Clin Oncol. 2020 Dec 9 [Epub]). This is an update of the BTZ arm of the phase 1/2a ANCHOR study (NCT03481556). Methods: Patients (pts) with RRMM were intolerant or refractory to a prior IMiD, with 1-4 prior lines of therapy (LoTs). Prior treatment with a proteasome inhibitor (PI) was allowed, but pts could not be refractory to PIs in the last LoT. Melflufen (30, 40, or 20 mg intravenously; d 1 of each 28-d cycle) was administered with BTZ (1.3 mg/m2 subcutaneous) + oral dex (20 mg on d 1, 4, 8, and 11 and 40 mg on d 15 and 22; dex dose reduced if aged ≥ 75 y). The primary objective in phase 1 was to determine the optimal phase 2 dose of melflufen for this combination. Results: As of the data cutoff date (October 19, 2020), 13 pts received melflufen (30 mg, n = 6; 40 mg, n = 7) + dex and BTZ. In the 30 mg and 40 mg cohorts, respectively, median age was 78.5 y (range, 70-82) and 70.0 y (range, 61-76); median prior LoTs was 3.5 (range, 2-4) and 2.0 (range, 1-4); 33% and 50% of evaluable pts had high-risk cytogenetics; 83% and 71% were refractory to last LoT; 100% and 86% received a prior PI; 33% and 14% were refractory to PIs. In the 30 mg and 40 mg cohorts, respectively, median treatment duration was 6.5 mo (range, 1.4-29.0) and 8.7 mo (range, 2.1-19.6); 4 (67%) and 4 pts (57%) were still on treatment; 2 and 3 pts discontinued (30 mg: progressive disease [PD] and other [1 pt each]; 40 mg: adverse event [AE], lack of efficacy, and PD [1 pt each]). Confirmed overall response rate in the 30 mg and 40 mg cohorts, respectively, was 50% (1 very good partial response [VGPR] and 2 partial response [PR]) and 71% (1 complete response, 3 VGPR, and 1 PR). Most common grade 3/4 treatment-related AEs (TRAEs) were thrombocytopenia (30 mg: 50%; 40 mg: 100%) and neutropenia (30 mg: 33%; 40 mg: 71%); grade 3/4 nonhematologic TRAEs were infrequent; 3 pts discontinued study treatment due to treatment-emergent AEs (30 mg: cardiac failure chronic and osteolysis [1 pt each]; 40 mg: thrombocytopenia [1 pt]). Serious TRAEs occurred in 2 pts (33%) in the 30 mg cohort (neutropenia and pneumonia [1 pt], syncope [1 pt]) and 1 pt (14%) in the 40 mg cohort (thrombocytopenia and neutropenia). No dose-limiting toxicities occurred at either dose level. Fatal AEs occurred in 1 pt in the 30 mg cohort (cardiac failure chronic; unrelated to study treatment). Conclusions: ANCHOR determined that the optimal dose of melflufen is 30 mg + dex and BTZ; results showed clinical activity in heavily pretreated pts. Recruitment is ongoing; updated data will be presented. Clinical trial information: NCT03481556.


2020 ◽  
Vol 4 (17) ◽  
pp. 4091-4101
Author(s):  
Arne Kolstad ◽  
Tim Illidge ◽  
Nils Bolstad ◽  
Signe Spetalen ◽  
Ulf Madsbu ◽  
...  

Abstract For patients with indolent non-Hodgkin lymphoma who fail initial anti-CD20–based immunochemotherapy or develop relapsed or refractory disease, there remains a significant unmet clinical need for new therapeutic approaches to improve outcomes and quality of life. 177Lu-lilotomab satetraxetan is a next-generation single-dose CD37-directed radioimmunotherapy (RIT) which was investigated in a phase 1/2a study in 74 patients with relapsed/refractory indolent non-Hodgkin B-cell lymphoma, including 57 patients with follicular lymphoma (FL). To improve targeting of 177Lu-lilotomab satetraxetan to tumor tissue and decrease hematologic toxicity, its administration was preceded by the anti-CD20 monoclonal antibody rituximab and the “cold” anti-CD37 antibody lilotomab. The most common adverse events (AEs) were reversible grade 3/4 neutropenia (31.6%) and thrombocytopenia (26.3%) with neutrophil and platelet count nadirs 5 to 7 weeks after RIT. The most frequent nonhematologic AE was grade 1/2 nausea (15.8%). With a single administration, the overall response rate was 61% (65% in patients with FL), including 30% complete responses. For FL with ≥2 prior therapies (n = 37), the overall response rate was 70%, including 32% complete responses. For patients with rituximab-refractory FL ≥2 prior therapies (n = 21), the overall response rate was 67%, and the complete response rate was 24%. The overall median duration of response was 13.6 months (32.0 months for patients with a complete response). 177Lu-lilotomab satetraxetan may provide a valuable alternative treatment approach in relapsed/refractory non-Hodgkin lymphoma, particularly in patients with comorbidities unsuitable for more intensive approaches. This trial was registered at www.clinicaltrials.gov as #NCT01796171.


2018 ◽  
Vol 115 (46) ◽  
pp. E10925-E10933 ◽  
Author(s):  
Peiyong Jiang ◽  
Kun Sun ◽  
Yu K. Tong ◽  
Suk Hang Cheng ◽  
Timothy H. T. Cheng ◽  
...  

Circulating tumor-derived cell-free DNA (ctDNA) analysis offers an attractive noninvasive means for detection and monitoring of cancers. Evidence for the presence of cancer is dependent on the ability to detect features in the peripheral circulation that are deemed as cancer-associated. We explored approaches to improve the chance of detecting the presence of cancer based on sequence information present on ctDNA molecules. We developed an approach to detect the total pool of somatic mutations. We then investigated if there existed a class of ctDNA signature in the form of preferred plasma DNA end coordinates. Cell-free DNA fragmentation is a nonrandom process. Using plasma samples obtained from liver transplant recipients, we showed that liver contributed cell-free DNA molecules ended more frequently at certain genomic coordinates than the nonliver-derived molecules. The abundance of plasma DNA molecules with these liver-associated ends correlated with the liver DNA fractions in the plasma samples. Studying the DNA end characteristics in plasma of patients with hepatocellular carcinoma and chronic hepatitis B, we showed that there were millions of tumor-associated plasma DNA end coordinates in the genome. Abundance of plasma DNA molecules with tumor-associated DNA ends correlated with the tumor DNA fractions even in plasma samples of hepatocellular carcinoma patients that were subjected to shallow-depth sequencing analysis. Plasma DNA end coordinates may therefore serve as hallmarks of ctDNA that could be sampled readily and, hence, may improve the cost-effectiveness of liquid biopsy assessment.


Sign in / Sign up

Export Citation Format

Share Document