OS05.8.A A Phase 0/1 ‘Trigger’ Trial of Ribociclib Plus Everolimus in Recurrent High-Grade Glioma

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii8-ii8
Author(s):  
N Sanai ◽  
A Tien ◽  
J Jiang ◽  
Y Chang ◽  
C Pennington-Krygier ◽  
...  

Abstract BACKGROUND The RB-CDK4/6 and mTOR signaling pathways are deregulated in high-grade glioma (HGG) and mTOR activation is a potential mechanism of resistance to CDK4/6 inhibition. This study evaluates the tumor pharmacokinetics (PK) and tumor pharmacodynamics (PD) of combined CDK4/6 and mTOR inhibition in recurrent HGG patients. MATERIAL AND METHODS Eligible patients had recurrent HGG with (1) intact RB expression, (2) CDKN2A/B deletion or CDK4/6 amplification, and (3) PTEN loss or PIK3CA mutations. Six patients received five days of presurgical ribociclib (400mg QD) plus everolimus (2.5mg QD) and then underwent tumor resection at 2, 8 or 24 hours following the last dose. Five subsequent dose-escalation cohorts each enrolled three additional patients, reaching a maximum dose-level of ribociclib (600mg QD) plus everolimus (60mg QW). Tumor tissue (gadolinium [Gd]-enhancing and nonenhancing regions), CSF, and plasma were collected. Total and unbound drug concentrations were determined using validated LC-MS/MS methods. Tumor PD effects, including RB and S6 phosphorylation, were compared to matched archival tissue. A PK ‘trigger’ (i.e., unbound concentration > 5-fold biochemical IC50) and a PD ‘trigger’ (>30% decrease in both pRB and pS6) were set for each drug. Gd-nonenhancing tissue exhibiting both PK and PD effects in excess of these thresholds qualified patients for postoperative combination therapy. RESULTS 21 patients with WHO Grade III (n=2) and WHO Grade IV (n=19) gliomas were enrolled. No dose-limiting toxicities were observed. Following presurgical drug, all patients demonstrated marked decrease in Gd-enhancement on preoperative MRI. In Gd-nonenhancing tumor regions, the median unbound concentration of ribociclib was 719 nM (i.e., > 5-fold biochemical IC50 for CDK4/6 inhibition), whereas the unbound everolimus tumor concentrations in all patients were below the lower limit of quantitation (i.e., < 0.2 nM). The median total concentrations of everolimus in tumors at dose-levels 0 to 5 were 2.9, 8.8, 10.3, 5.0, 15.7, and 13.7 nM, respectively. Across all dose-levels, 62% (13/21) and 22% (5/21) of tumors demonstrated decreased tumor RB and S6 phosphorylation, respectively. Tumor proliferation (MIB-1) was decreased in 67% (14/21) of all patients. CONCLUSION In adult HGG, ribociclib achieves pharmacologically-relevant concentrations in Gd-nonenhancing tumor, consistent with the observed tumor PD effects. Everolimus exhibits very limited penetration into human glioma tissue. Our study supports further development of ribociclib, but not everolimus, for the treatment of glioma patients.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi64-vi64
Author(s):  
Nader Sanai ◽  
An-Chi Tien ◽  
Jun Jiang ◽  
Yu-Wei Chang ◽  
Chelsea Pennington-Krygier ◽  
...  

Abstract BACKGROUND mTOR activation is a mechanism of resistance in CDK4/6 targeting. We evaluated tumor pharmacokinetics (PK) and tumor pharmacodynamics (PD) of combined CDK4/6 and mTOR inhibition in recurrent high-grade glioma (HGG) patients. METHODS Recurrent HGG patients with (1) intact RB, (2) CDKN2A/B deletion or CDK4/6 amplification, and (3) PTEN loss or PIK3CA mutations receive five days of presurgical ribociclib plus everolimus prior to resection at 2, 8 or 24 hours after the final dose. Beginning at 400mg QD ribociclib plus 2.5mg QD everolimus, six dose-escalations summit at 600mg QD plus 60mg QW. Gadolinium [Gd]-enhancing and nonenhancing tumor regions, CSF, and plasma are collected. Total and unbound drug concentrations are determined using validated LC-MS/MS methods. RB and S6 phosphorylation are compared to matched archival tissue. To select patients for a therapeutic expansion phase of combined drug therapy, the protocol includes a PK ‘trigger’ (i.e., for each drug, unbound concentration in Gd-nonenhancing tumor > 5-fold biochemical IC50) and a PD ‘trigger’ (i.e., for each tumor, > 30% decrease in pRB and pS6). RESULTS 21 patients with WHO Grade III (n=2) and IV (n=19) gliomas were enrolled into the Phase 0 component of the study. No dose-limiting toxicities were observed. In Gd-nonenhancing tumor regions, the median unbound concentration of ribociclib was 719 nM, whereas unbound everolimus tumor concentrations were undetectable. Across all dose-levels, 62% (13/21) and 22% (5/21) of tumors demonstrated decreased tumor RB and S6 phosphorylation, respectively. Tumor proliferation (MIB-1) was decreased in 67% (14/21) of all patients. No patients qualified for the therapeutic expansion phase. CONCLUSION In adult HGG, ribociclib achieves pharmacologically-relevant concentrations in Gd-nonenhancing tumor whereas everolimus exhibits no meaningful tumor penetration. These findings support further clinical development of ribociclib, but not everolimus, for the treatment of high-grade glioma patients.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2018-2018 ◽  
Author(s):  
Jana Portnow ◽  
Behnam Badie ◽  
Timothy W. Synold ◽  
Alexander Annala ◽  
Bihong Chen ◽  
...  

2018 Background: Human NSCs are inherently tumor-tropic, making them attractive drug delivery vehicles. This pilot-feasibility study assessed the safety of using genetically-modified NSCs for tumor selective enzyme/prodrug therapy. An immortalized, clonal NSC line was retrovirally-transduced to stably express CD, which converts the prodrug 5-FC to 5-fluorouracil (5-FU), producing chemotherapy locally at sites of tumor in the brain. Methods: Patients 18 years or older with recurrent high-grade glioma underwent intracranial administration of NSCs during tumor resection or biopsy. Four days later, 5-FC was administered orally every 6 hours for 7 days. Study treatment was given only once. A standard 3+3 dose escalation schema was used to increase doses of NSCs from 1 x 107 to 5 x 107 and 5-FC from 75 to 150 mg/kg/day. Intracerebral microdialysis was performed to measure brain levels of 5-FC and 5-FU; serial blood samples were obtained to assess systemic drug concentrations. Three patients received iron-labeled NSCs for MRI tracking. Brain autopsies were done on 2 patients. Results: Fifteen patients received study treatment. Three were inevaluable for toxicity and replaced. All patients tolerated the NSCs well. There was 1 dose-limiting toxicity (grade 3 transaminitis) possibly related to 5-FC. At the highest dose level of NSCs, the average steady-state concentration of 5-FU in the brain was 63.9±7.9 nM. The average maximum 5-FU level in brain was 104±88 nM compared to 24±36 nM in plasma, indicating local production of 5-FU in the brain by the NSCs. MR imaging of iron-labeled NSCs showed preliminary evidence of NSC migration. Autopsy data documented (by IHC, FISH, and PCR) NSCs at distant sites of tumor in the brain and no development of secondary tumors. Conclusions: This first-in-human study has demonstrated safety and proof-of-concept regarding NSC-mediated conversion of 5-FC to 5-FU and NSC tumor-tropism. NSCs have the potential to overcome obstacles of drug delivery that limit current gene therapy strategies. Results of this pilot study will serve as the foundation for future NSC studies. (Supported by NCI 1R21 CA137639-01A1, CIRM DR-01421). Clinical trial information: NCT01172964.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii33-ii34
Author(s):  
Macarena De La Fuente ◽  
Tulay Koru-Sengul ◽  
Deborah Heros ◽  
Feng Miao ◽  
Alain Fernandez Marrero ◽  
...  

Abstract BACKGROUND Glioblastoma is the most common primary malignant brain tumor. Despite multimodality treatment approach, median progression-free survival (PFS) is only 8 months, median overall-survival (OS) 14 months and 5-year survival rate of under 10%. Dendritic cells (DCs) are the professional antigen presenting cells of the immune system. The rationale for sensitizing dendritic cells to a pool of non-selected tumor antigens is based on the marked heterogeneity present within glioblastoma tumor cells. METHODS Phase 1/feasibility study of DC vaccine for recurrent high-grade glioma was conducted. Pooled, non-selected tumor antigens collected via tumor cell lysate were used for DC sensitization. RNA sequencing analysis was performed on all tumor samples. Cytokine levels in serum were detected using a Luminex cytokine panel. RESULTS A total of 20 patients were enrolled onto this study (median age 58yrs, range: 39–74, 65% male). Pathology showed WHO grade IV glioblastoma in 14 (70%) and grade III anaplastic astrocytoma in 6 (30%) patients. IDH wild type in 19 (95%) patients. Treatment emergent adverse events (all grades, regardless of attribution) occurred in more than 15% of the patients (20% fatigue, 15% dizziness, 15% headache, none leading to treatment discontinuation). There were five grade 3–4 and none grade 5 events. One grade 4 event (seizure) probable related to investigational treatment leading to treatment discontinuation. Four grade 3 events (dysphasia, possible related; intracranial hemorrhage unrelated; muscle weakness, unlikely related and hematoma, unrelated). Median PFS was 3.8 months. Median OS was 11 months. RNA sequencing in tumor samples and correlation with cytokine levels in serum is currently been analyzed. CONCLUSION Tumor lysate pulsed DC vaccination demonstrates acceptable safety and tolerability in high-grade glioma patients. Evaluations of integrating molecular profiling RNA sequencing information and cytokine levels to identify potential subset of patients with significant clinical benefit will be provided.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 561
Author(s):  
Chibueze D. Nwagwu ◽  
Amanda V. Immidisetti ◽  
Michael Y. Jiang ◽  
Oluwasegun Adeagbo ◽  
David C. Adamson ◽  
...  

Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi69-vi69
Author(s):  
James Liu ◽  
Chibueze D Nwagwu ◽  
Amanda V Immidisetti ◽  
Gabriela Bukanowska ◽  
Anne-Marie Carbonell ◽  
...  

Abstract BACKGROUND OS2966 is a first-in-class, humanized and deimmunized monoclonal antibody which antagonizes CD29/β1integrin, a mechanosignaling receptor prominently upregulated in glioblastoma. Preclinical studies in mice and non-human primates have demonstrated safety and encouraging efficacy. A two-part, ascending concentration, phase I clinical trial was therefore initiated to evaluate the safety and feasibility of delivering OS2966 directly to the site of disease via convection-enhanced delivery (CED) in recurrent high-grade glioma patients. METHODS This study has a 2-part design: In part 1, patients undergo stereotactic tumor biopsy followed by placement of a multiport CED catheter for delivery of OS2966 to the bulk contrast enhancing tumor. Subsequently, patients undergo a clinically-indicated tumor resection followed by placement of two CED catheters and delivery of OS2966 to the surrounding tumor-infiltrated brain. A unique concentration-based accelerated titration design is utilized for dose escalation. Given availability of pre and post infusion samples, pharmacodynamic data will be analyzed to explore mechanism of action of OS2966. RESULTS Two subjects have been treated at two corresponding dose levels (0.2mg/mL and 0.4 mg/mL). No dose-limiting toxicity or unexpected safety issues have been identified. To date, reported adverse events were mild (i.e., grade 1) and consistent with underlying disease and surgical procedures. No adverse events were attributed to OS2966 or CED catheter placement. Further, no clinically significant changes from baseline neurological exam have been noted for either patient through initial follow-up. Maximal tumor coverage and concomitant gross total resection were achieved for both patients. Tumor volume measured 1.63 cm3 and 16 cm3 for Patient 1 and 2 respectively with an intratumoral Vd/Vi ratio of 1.3. and 0.94. Pharmacodynamic analysis via tissue-level biomarkers is ongoing and will be presented. CONCLUSION Initial data demonstrates the safety and feasibility of direct intracranial delivery of OS2966.


2017 ◽  
Vol 126 (5) ◽  
pp. 1484-1487 ◽  
Author(s):  
Matthew T. Stib ◽  
Michael Johnson ◽  
Alan Siu ◽  
M. Isabel Almira-Suarez ◽  
Zachary Litvack ◽  
...  

The authors describe the case of a large WHO Grade III anaplastic oligoastrocytoma extending through the anterior skull base and into the right nasal cavity and sinuses. Glial neoplasms are typically confined to the intracranial compartment within the brain parenchyma and rarely extend into the nasal cavity without prior surgical or radiation therapy. This 42-year-old woman presented with progressive headaches and sinus congestion. MR imaging findings revealed a large intracranial lesion with intranasal extension. Endoscopic nasal biopsy revealed pathology consistent with an infiltrating glioma. The patient subsequently underwent a combined transcranial/endonasal endoscopic approach for resection of this lesion. Pathological diagnosis revealed a WHO Grade III oligoastrocytoma. This report reviews the mechanisms of extradural glioma extension. To the authors' knowledge, it is the second report of a high-grade glioma exhibiting nasal extension without prior surgical or radiation treatment.


2021 ◽  
Author(s):  
Dexiang Wang ◽  
Jia Dong ◽  
Min Zeng ◽  
Xiaoyuan Liu ◽  
Xiang Yan ◽  
...  

Abstract Background High-grade glioma (HGG) is the most malignant brain tumor with poor outcome. Whether anesthetic methods have impact on the outcome of these patients is still unknown. Retrospective study has found that there is no difference between two anesthesia methods on the overall survival (OS), however, intravenous anesthesia with propofol might be beneficial in subgroup patients of KPS<80. Further prospective studies are needed to evaluate the results.Methods This is a single-centered, randomized controlled, parallel group trial. 196 patients with primary HGG for tumor resection will be randomly assigned to receive either the intravenous anesthesia with propofol or inhalation anesthesia with sevoflurane. The primary outcome is the OS within 18 months. Secondary outcomes include progression-free survival (PFS), the numerical rating scale (NRS) of pain intensity and sleep quality, the postoperative encephaloedema volume, complications, the length and cost effectiveness of hospital stay of the patients.Discussion This is a randomized controlled trial to compare the effect of intravenous or inhalation anesthesia maintenance on the outcome of supratentorial HGG patients.The results will help to optimizing the anesthesia methods in these patients.Trial registration: ClinicalTrials.gov (ID: NCT02756312). Registered on 27 April 2020 https://register.clinicaltrials.gov/


Author(s):  
Stephen J Price ◽  
Harry Bulstrode ◽  
Richard Mair

The term high-grade glioma (HGG) encompasses a number of histological entities that are considered by the WHO Classification as WHO Grade III and IV tumours. They have traditionally been considered as having similar behaviour and had been treated in a similar manner but recent advances in our understanding of tumour biology have led to the identification of molecular markers that are now central to the classification of these tumours. Normal human cells develop into cancer cells through a stepwise accumulation of genomic and epigenomic alterations and this chapter considers the molecular markers of gliomas and explains their significance before going on to discuss the optimal management.


2018 ◽  
Vol 25 (6) ◽  
pp. 1366-1373 ◽  
Author(s):  
Roland Coppens ◽  
Johanna Yang ◽  
Sunita Ghosh ◽  
John Gill ◽  
Carole Chambers ◽  
...  

Background Cotrimoxazole is associated with the development of hyponatremia, hyperkalemia and elevated serum creatinine, especially when combined with inhibitors of the renin–angiotensin–aldosterone system (RAAS). Pneumocystis jirovecii pneumonia (PJP) prophylaxis is the standard of care for high-grade glioma (HGG) patients receiving temozolomide concurrently with radiotherapy, low-dose cotrimoxazole being the preferred agent. Many of these patients are also taking renin–angiotensin–aldosterone system inhibitors, however the risk of significant laboratory disturbance in these patients remains undescribed. Objective We evaluated whether high-grade glioma patients taking renin–angiotensin–aldosterone system inhibitors receiving low-dose cotrimoxazole for Pneumocystis jirovecii pneumonia prophylaxis are at additional risk of laboratory disturbances in comparison with their non-renin–angiotensin–aldosterone system counterparts. Methods We conducted a retrospective chart review of adult neuro-oncology patients treated for WHO Grade III or IV glioma between 2013 and 2016. Patient serum Na, K, creatinine, and eGFR were compared (renin–angiotensin–aldosterone system vs. non-renin–angiotensin–aldosterone system) using the chi-square test. Binary logistic regression analysis was then performed to account for differences between cohorts. Results Of 63 patients (35 non-renin–angiotensin–aldosterone system, 28 renin–angiotensin–aldosterone system), patients in the renin–angiotensin–aldosterone system cohort were more likely to experience a laboratory disturbance (odds ratio=3.17, p = 0.03). Overall, these disturbances were moderate, but were slightly more common and slightly more severe in the renin–angiotensin–aldosterone system cohort. Conclusion Adding low-dose cotrimoxazole for Pneumocystis jirovecii pneumonia prophylaxis to the regimens of patients with high-grade glioma taking renin–angiotensin–aldosterone system inhibitors increases the risk of laboratory disturbances. While these are generally moderate, some patients are at risk of significant electrolyte abnormalities requiring intervention.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
An-Chi Tien ◽  
Jing Li ◽  
Xun Bao ◽  
Alanna DeRogatis ◽  
Yoko Fujita ◽  
...  

Abstract BACKGROUND New approaches are urgently needed for aggressive meningiomas, which remain largely incurable. Forkhead Box M1 (FOXM1) has been identified as a master transcription factor in aggressive meningiomas and Cyclin D-dependent Kinases (CDK) are positive regulators of cell-cycle entry, promoting tumorigenesis through FOXM1 activation. We evaluated the tumor pharmacokinetics (PK), tumor pharmacodynamics (PD), and preliminary clinical response of ribociclib, a selective CDK4/6-inhibitor, in aggressive meningioma patients. METHODS Eight aggressive WHO Grade II/III meningioma patients with intact RB expression were enrolled and administered oral ribociclib daily for 5 days prior to tumor resection. Plasma, tumor, and cerebrospinal fluid (CSF) samples were collected at 2, 8, or 24 h after the last dose. Total and unbound drug concentrations were determined using a validated LC-MS/MS method. PD effects, including RB and FoxM1 phosphorylation, were compared to matched archival tissue. Patients with PK and PD responses in tumor tissue, defined as unbound ribociclib concentration > 5-fold in vitro IC50 (0.04µM) and >20% decrease in pRB levels, respectively, were enrolled into an expansion cohort for preliminary assessment of progression-free survival. RESULTS The median CSF concentration of ribociclib was 0.25 µM. In tumor tissue, the median unbound ribociclib concentration was 1.36 µM and the median unbound tumor-to-plasma ratio was 5.34. Suppression of G1-to-S phase was inferred in tumors with declining FoxM1 phosphorylation (50%), RB phosphorylation (38%), and cellular proliferation (75%). Four patients demonstrated concurrent PK and PD responses and were graduated to continuous ribociclib therapy. At 14 months, two of these patients (one Grade II and one Grade III) demonstrate partial responses per RANO criteria. CONCLUSION Ribociclib achieves pharmacologically-active concentrations in aggressive meningioma tissue. Target modulation was demonstrated by a decrease in FOXM1-mediated tumor proliferation. Further investigation of ribociclib as a therapeutic strategy for aggressive meningiomas is warranted.


Sign in / Sign up

Export Citation Format

Share Document