scholarly journals Protein tyrosine phosphatase mu regulates glioblastoma cell growth and survival in vivo

2012 ◽  
Vol 14 (5) ◽  
pp. 561-573 ◽  
Author(s):  
H. Kaur ◽  
S. M. Burden-Gulley ◽  
P. J. Phillips-Mason ◽  
J. P. Basilion ◽  
A. E. Sloan ◽  
...  
2009 ◽  
Vol 69 (17) ◽  
pp. 6960-6968 ◽  
Author(s):  
Adam M. Burgoyne ◽  
Polly J. Phillips-Mason ◽  
Susan M. Burden-Gulley ◽  
Shenandoah Robinson ◽  
Andrew E. Sloan ◽  
...  

2003 ◽  
Vol 23 (6) ◽  
pp. 2096-2108 ◽  
Author(s):  
Sandra Galic ◽  
Manuela Klingler-Hoffmann ◽  
Michelle T. Fodero-Tavoletti ◽  
Michelle A. Puryer ◽  
Tzu-Ching Meng ◽  
...  

ABSTRACT The human protein tyrosine phosphatase TCPTP exists as two forms: an endoplasmic reticulum-targeted 48-kDa form (TC48) and a nuclear 45-kDa form (TC45). Although targeted to the nucleus, TC45 can exit in response to specific stimuli to dephosphorylate cytoplasmic substrates. In this study, we investigated the downregulation of insulin receptor (IR) signaling by TCPTP. In response to insulin stimulation, the TC48-D182A and TC45-D182A “substrate-trapping” mutants formed stable complexes with the endogenous tyrosine-phosphorylated IR β-subunit in 293 cells. Moreover, in response to insulin stimulation, the TC45-D182A mutant accumulated in the cytoplasm of cells overexpressing the IR and in part colocalized with the IR β-subunit at the cell periphery. These results indicate that the IR may serve as a cellular substrate for both TC48 and TC45. In immortalized TCPTP−/− murine embryo fibroblasts, insulin-induced IR β-subunit tyrosine phosphorylation and protein kinase PKB/Akt activation were enhanced relative to the values in TCPTP+/+ cells. Importantly, the expression of TC45 or TC48 to physiological levels suppressed the enhanced insulin-induced signaling in TCPTP−/− cells. These results indicate that the differentially localized variants of TCPTP may dephosphorylate the IR and downregulate insulin-induced signaling in vivo.


1994 ◽  
Vol 14 (8) ◽  
pp. 5523-5532
Author(s):  
D R Stover ◽  
K A Walsh

We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo.


ChemMedChem ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Stefanie Grosskopf ◽  
Chris Eckert ◽  
Christoph Arkona ◽  
Silke Radetzki ◽  
Kerstin Böhm ◽  
...  

2002 ◽  
Vol 162 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Xuechu Zhen ◽  
Claudio Torres ◽  
Eitan Friedman

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 244 ◽  
Author(s):  
Stefanie Taute ◽  
Philipp Böhnke ◽  
Jasmin Sprissler ◽  
Stephanie Buchholz ◽  
Martin Hufbauer ◽  
...  

Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.


Sign in / Sign up

Export Citation Format

Share Document