scholarly journals ET-9 Development of photosensitive antibodies for near-infrared light immunotherapy targeting EGFR and IL13Rα2 of malignant gliomas and investigation of their photodynamic cytotoxic activity in vitro

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Naosuke Nonoguchi ◽  
Akihiro Kambara ◽  
Seigo Kimura ◽  
Shinji Kawabata ◽  
Ryokichi Yagi ◽  
...  

Abstract Introduction: Near-Infrared Photoimmunotherapy (NIR-PIT) is a recently developed hybrid cancer therapy based on photodynamic cytotoxicity and anti-tumor immunopotentiation, utilizing a photosensitive antibody drug (PSAD). A global Phase III trial of NIR-PIT with an anti-EGFR-PSAD in patients with recurrent head and neck squamous cell carcinoma (HNSCC) is already underway, and NIR-PIT is expected to have therapeutic applications also in malignant gliomas. Methods: In this study, monoclonal antibodies to EGFR and IL13Rα2 were conjugated to the photosensitive dye IRDye700DX (IR700) to produce PSADs (EGFR-Ab/IR700 and IL13Rα2-Ab/IR700) and in vitro PDT assays using these PSADs were performed on four human glioma cell lines (U87MG, U251, U138, A172).Five groups were studied: EGFR-Ab/IR700 monotherapy: 5 μg/ml or 10 μg/ml, IL13Rα2-Ab/IR700 monotherapy: 5 μg/ml or 10 μg/ml, and EGFR-Ab/IR700: 5 μg/ml + IL13Rα2-Ab/IR700: 5 μg/ml combination therapy. The cytotoxic activity of each group was compared after irradiation with 690 nm light at 16 J/cm2. Results: Significantly higher cytotoxic activity was observed in all four glioma cell lines when EGFR-Ab/IR700 and IL13Rα2-Ab/IR700 were used in combination at 5 μg/ml each, than when each PSAD was treated with a doubled dose (10 μg/ml).Conclusion: Malignant gliomas show extensive cellular heterogeneity with diverse expression of cell surface antigens. The present results suggest that a therapeutic strategy using several different photosensitive antibodies simultaneously may lead to the release of tumor antigens from a greater number of tumor cells, resulting in a more efficient host immune response for therapeutic purposes.

2013 ◽  
Vol 119 (6) ◽  
pp. 1415-1423 ◽  
Author(s):  
Daniela A. Bota ◽  
Daniela Alexandru ◽  
Stephen T. Keir ◽  
Darell Bigner ◽  
James Vredenburgh ◽  
...  

Object Recurrent malignant gliomas have inherent resistance to traditional chemotherapy. Novel therapies target specific molecular mechanisms involved in abnormal signaling and resistance to apoptosis. The proteasome is a key regulator of multiple cellular functions, and its inhibition in malignant astrocytic lines causes cell growth arrest and apoptotic cell death. The proteasome inhibitor bortezomib was reported to have very good in vitro activity against malignant glioma cell lines, with modest activity in animal models as well as in clinical trials as a single agent. In this paper, the authors describe the multiple effects of bortezomib in both in vitro and in vivo glioma models and offer a novel explanation for its seeming lack of activity. Methods Glioma stem-like cells (GSCs) were obtained from resected glioblastomas (GBMs) at surgery and expanded in culture. Stable glioma cell lines (U21 and D54) as well as temozolomide (TMZ)-resistant glioma cells derived from U251 and D54-MG were also cultured. GSCs from 2 different tumors, as well as D54 and U251 cells, were treated with bortezomib, and the effect of the drug was measured using an XTT cell viability assay. The activity of bortezomib was then determined in D54-MG and/or U251 cells using apoptosis analysis as well as caspase-3 activity and proteasome activity measurements. Human glioma xenograft models were created in nude mice by subcutaneous injection. Bevacizumab was administered via intraperitoneal injection at a dose of 5 mg/kg daily. Bortezomib was administered by intraperitoneal injection 1 hour after bevacizumab administration in doses of at a dose of 0.35 mg/kg on days 1, 4, 8, and 11 every 21 days. Tumors were measured twice weekly. Results Bortezomib induced caspase-3 activation and apoptotic cell death in stable glioma cell lines and in glioma stem-like cells (GSCs) derived from malignant tumor specimens Furthermore, TMZ-resistant glioma cell lines retained susceptibility to the proteasome inhibition. The bortezomib activity was directly proportional with the cells' baseline proteasome activity. The proteasome inhibition stimulated both hypoxia-inducible factor (HIF)–1α and vascular endothelial growth factor (VEGF) production in malignant GSCs. As such, the VEGF produced by GSCs stimulated endothelial cell growth, an effect that could be prevented by the addition of bevacizumab (VEGF antibody) to the media. Similarly, administration of bortezomib and bevacizumab to athymic mice carrying subcutaneous malignant glioma xenografts resulted in greater tumor inhibition and greater improvement in survival than administration of either drug alone. These data indicate that simultaneous proteasome inhibition and VEGF blockade offer increased benefit as a strategy for malignant glioma therapy. Conclusions The results of this study indicate that combination therapies based on bortezomib and bevacizumab might offer an increased benefit when the two agents are used in combination. These drugs have a complementary mechanism of action and therefore can be used together to treat TMZ-resistant malignant gliomas.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2019 ◽  
Vol 18 ◽  
pp. 153303381882140 ◽  
Author(s):  
Ye Zhang ◽  
Rui Zhang ◽  
Rui Sui ◽  
Yi Chen ◽  
Haiyang Liang ◽  
...  

MicroRNA-374a has been abnormally expressed in several cancer types; however, its role in glioma remains unclear. Therefore, we aimed to investigate whether microR-374a participated in the progression of glioma. Expression of microR-374a in glioma cell lines and normal cell line was measured by quantitative real-time polymerase chain reaction. Luciferase reporter assay and Western blot were used to detect the targets of microR-374a. In vitro functional experiments were conducted to investigate the biological role of microR-374a. Low expression of microR-374a was found in glioma cell lines. Prokineticin 2 was identified as a direct target of microR-374a in glioma. Investigations on the mechanisms related to glioma progression showed that microR-374a inhibited glioma cell proliferation, cell cycle progression, and cell invasion through targeting Prokineticin 2. Taken together, these results revealed that microR-374a functions as tumor suppressor by targeting Prokineticin 2, suggesting it might be a novel therapeutic target for glioma.


2005 ◽  
Vol 72 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Maode Wang ◽  
Daizo Yoshida ◽  
Shouxun Liu ◽  
Akira Teramoto

2004 ◽  
Vol 93 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Gina Peacock ◽  
Richard Sidwell ◽  
Guangliang Pan ◽  
Svein Øie ◽  
D.Robert Lu

2009 ◽  
Vol 28 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Efstathia Giannopoulou ◽  
Konstantinos Dimitropoulos ◽  
Andreas A. Argyriou ◽  
Angelos K. Koutras ◽  
Fotinos Dimitrakopoulos ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi39-vi40
Author(s):  
Lubayna Elahi ◽  
Matthew Garrett ◽  
Lea Guo ◽  
Michael Condro ◽  
Riki Kawaguchi ◽  
...  

Abstract Histone deacetylase inhibitors (HDACi’s) have emerged as a promising class of drugs for treatment of malignancies such as glioblastoma (GBM). Several studies have demonstrated the anti-tumor property of HDACi’s against GBM in both in vitro and in vivo experiments. Nonetheless, in clinical trials, HDACi only marginally increased overall survival of patients with GBM. The mixed results of trials with HDACi’s in glioma have prompted us to hypothesize that improved selection of patients by tumor characteristics could enhance the efficacy of therapy. We specifically tested the effects of valproic acid (VPA), a HDACi and an antiepileptic drug against IDH mutant gliomas. We have previously demonstrated that our IDH mutant glioma cell lines have gene expression and methylation patterns highly similar to IDH mutant tumors in situ. Mutant IDH1 alters the epigenetic landscape of gliomas leading to the hypermethylation phenotype and transcriptional repression of genes. This repression of genes may contribute to tumorigenesis and progression of IDH mutant gliomas. We found that VPA inhibits the growth of patient-derived IDH1 mutant glioma lines. In addition, RNA sequencing analysis of vehicle and VPA-treated IDH1 mutant glioma cells showed de-repression of several genes previously shown to be downregulated in IDH1 mutant glioma cell lines. We also treated cells with another HDACi LBH589 and found that both VPA and LBH589 upregulates similar gene sets suggesting that HDAC inhibition promotes de-repression of previously repressed genes. Ongoing studies are aimed at determining the molecular mechanism by which VPA regulates the growth of IDH1 mutant tumors.


2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v58.5-v59
Author(s):  
Verena Leidgens ◽  
Corinna Seliger ◽  
Petra Leukel ◽  
Birgit Jachnik ◽  
Arabel Vollmann-Zwerenz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document