scholarly journals Quantum simulation of particle pair creation near the event horizon

2020 ◽  
Vol 7 (9) ◽  
pp. 1476-1484
Author(s):  
Yao Wang ◽  
Chong Sheng ◽  
Yong-Heng Lu ◽  
Jun Gao ◽  
Yi-Jun Chang ◽  
...  

Abstract Though it is still a big challenge to unify general relativity and quantum mechanics in modern physics, the theory of quantum field related with the gravitational effect has been well developed and some striking phenomena are predicted, such as Hawking radiation. However, the direct measurement of these quantum effects under general relativity is far beyond present experiment techniques. Fortunately, the emulation of general relativity phenomena in the laboratory has become accessible in recent years. However, up to now, these simulations are limited either in classical regime or in flat space whereas quantum simulation related with general relativity is rarely involved. Here we propose and experimentally demonstrate a quantum evolution of fermions in close proximity to an artificial black hole on a photonic chip. We successfully observe the acceleration behavior, quantum creation, and evolution of a fermion pair near the event horizon: a single-photon wave packet with positive energy escapes from the black hole while negative energy is captured. Our extensible platform not only provides a route to access quantum effects related with general relativity, but also has the potentiality to investigate quantum gravity in future.

2021 ◽  
Author(s):  
Gerard ’t Hooft

It is suspected that the quantum evolution equations describing the micro-world as we know it are of a special kind that allows transformations to a special set of basis states in Hilbert space, such that, in this basis, the evolution is given by elements of the permutation group. This would restore an ontological interpretation. It is shown how, at low energies per particle degree of freedom, almost any quantum system allows for such a transformation. This contradicts Bell’s theorem, and we emphasise why some of the assumptions made by Bell to prove his theorem cannot hold for the models studied here. We speculate how an approach of this kind may become helpful in isolating the most likely version of the Standard Model, combined with General Relativity. A link is suggested with black hole physics.


2020 ◽  
Vol 6 (12) ◽  
pp. eaaz1310 ◽  
Author(s):  
Michael D. Johnson ◽  
Alexandru Lupsasca ◽  
Andrew Strominger ◽  
George N. Wong ◽  
Shahar Hadar ◽  
...  

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.


Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptoticallyflat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.


1997 ◽  
Vol 12 (10) ◽  
pp. 709-718 ◽  
Author(s):  
Takeshi Chiba ◽  
Masaru Siino

We investigate the quantum effects on the so-called critical phenomena in black hole formation. Quantum effects of a scalar field are treated semiclassically via a trace anomaly method. It is found that the demand of regularity at the origin implies the disappearance of the echo. It is also found that semiclassical equations of motion do not admit continuously self-similar solutions. The quantum effects would change the critical solution from a discretely self-similar one to a solution without critical phenomena.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644015
Author(s):  
Roberto Emparan ◽  
Marina Martínez

The fusion of two black holes — a signature phenomenon of General Relativity — is usually regarded as a process so complex that nothing short of a supercomputer simulation can accurately capture it. In this essay, we explain how the event horizon of the merger can be found in an exact analytic way in the limit where one of the black holes is much smaller than the other. Remarkably, the ideas and techniques involved are elementary: the equivalence principle, null geodesics in the Schwarzschild solution, and the notion of event horizon itself. With these, one can identify features such as the line of caustics at which light rays enter the horizon, and find indications of universal critical behavior when the two black holes touch.


2020 ◽  
Vol 35 (35) ◽  
pp. 2050291
Author(s):  
S. I. Kruglov

We consider rational nonlinear electrodynamics with the Lagrangian [Formula: see text] ([Formula: see text] is the Lorentz invariant), proposed in Ref. 63, coupled to General Relativity. The effective geometry induced by nonlinear electrodynamics corrections are found. We determine shadow’s size of regular non-rotating magnetic black holes and compare them with the shadow size of the super-massive M87[Formula: see text] black hole imaged by the Event Horizon Telescope collaboration. Assuming that the black hole mass has a pure electromagnetic nature, we obtain the black hole magnetic charge. The size of the shadow obtained is very close to the shadow size of non-regular neutral Schwarzschild black holes. As a result, we can interpret the super-massive M87[Formula: see text] black hole as a regular (without singularities) magnetized black hole.


2020 ◽  
Author(s):  
Deep Bhattacharjee

This paper is totally based on the mathematical physics of the Black holes. In Einstein’s theory of “General Relativity”, Schwarzschild solution is the vacuum solutions of the Einstein Field Equations that describes the gravity potential from outside the body of a spherically symmetric object having zero charge, zero mass and zero cosmological constant[1]. It was discovered by Karl Schwarzschild in 1916, a little more than a month after the publication of the famous GR and the singularity is a point singularity which can be best described as a coordinate singularity rather than a real singularity, however, the drawback of this theory is that it fails to take into account the real life scenario of black holes with charge and spin angular momentum. The black hole is based on event horizon and Schwarzschild radius. However, Physicists were trying to develop a metric for the real life scenario of a black hole with a spin angular momen-tum and ultimately the exact solution of a charged rotating black hole had been discovered by Roy Kerr in 1965 as the Kerr-Newman metric[2][3]. The Kerr metric is one of the toughest metric in physics and is the extensional generalization to a rotating body of the Schwarzschild metric. The metric describes the vacuum geometry of space-time around a rotating axially-symmetric black hole with a quasipotential event horizon. In Kerr metric there are two event hori-zons (inner and outer), two ergospheres and an ergosurface. The most important effect of the Kerr metric is the frame dragging (also known as Lense-Thirring Precession) is a distinctive prediction of General relativity. The first direct observation of the collision of two Kerr Black Holes has been discovered by LIGO in 2016 hence setting up a milestone of General Relativity in the history of Physics. Here, the Kerr metric has been introduced in the Boyer-Lindquist forms and it is derived from the Schwarzschild metric using the Spin-Coefficient formalism. According to the “Cosmic Censorship Hypothesis”, a naked singularity cannot exist in nature as nature always hides the singularity via an event horizon. However, in this paper I will prove the existence of the “Naked Singularity" taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes. I will not go in detail about the contradiction of ‘Chronology Protection Conjecture” [4]whether the Stress-Energy-Momentum Tensor can violate the ANEC (Average Null Energy Conditions) or not with the values of less than zero or greater than, equal to zero, instead I will focus definitely on the creation of the mathematical formulation of a wormhole from a Naked Ring Kerr Singularity of a Kerr Black Hole without any event horizon or ergosphere. Another important thing to mention in this paper is that I have taken the time to be imaginary[5] as because, a singularity being an eternal point of time can only be smoothen out if the time is imaginary rather than real which will allow the particle or null rays inside a wormhole to cross the singularity and making entrance to the other universe. The final conclusion would be to determine the mass-energy equivalence principle as spin angular momentum increases with a decrease in BH mass due to the vanishing event horizon and ergosphere thereby maintaining the equivalence via apparent and absolute masses in relation to spin J along the orthogonal Z axis. A ‘NAKED SINGULARITY’ alters every parameters of a BH and to include this parameters along with affine spin coefficient, it has been proved that without any spin angular momentum the generation of wormhole and vanishing of event horizon and singularity is not possible.


2014 ◽  
Vol 29 (11) ◽  
pp. 1450052 ◽  
Author(s):  
Wontae Kim ◽  
Edwin J. Son

We find radiation in an infalling frame and present an explicit analytic evidence of the failure of no drama condition by showing that an infalling observer finds an infinite negative energy density at the event horizon. The negative and positive energy density regions are divided by the newly defined zero-energy curve (ZEC). The evaporating black hole is surrounded by the negative energy which can also be observed in the infalling frame.


2009 ◽  
Vol 18 (14) ◽  
pp. 2221-2229 ◽  
Author(s):  
R. MAIER ◽  
I. DAMIÃO SOARES

The dynamics of gravitational collapse is examined in the realm of string-based formalism of D-branes which encompasses general relativity as a low energy limit. A complete analytical solution is given to the spherically symmetric collapse of a pure dust star, including its matching with a corrected Schwarzschild exterior space–time. The collapse forms a black hole (an exterior event horizon) enclosing not a singularity but perpetually bouncing matter in the infinite chain of space–time maximal analytical extensions inside the outer event horizon. This chain of analytical extensions has a structure analogous to that of the Reissner–Nordstrom solution. The interior trapped bouncing matter has the possibility of being expelled by disruptive nonlinear resonance mechanisms.


2006 ◽  
Vol 15 (06) ◽  
pp. 817-843 ◽  
Author(s):  
ARI PELTOLA ◽  
JARMO MÄKELÄ

Despite over thirty years of research in black hole thermodynamics, our understanding of the possible role played by the inner horizons of Reissner–Nordström and Kerr–Newman black holes in black hole thermodynamics is still somewhat incomplete. There are derivations which imply that the temperature of the inner horizon is negative and it is not quite clear what this means. Motivated by this problem, we perform a detailed analysis of the radiation emitted by the inner horizon of the Reissner–Nordström black hole. As a result, we find that in a maximally extended Reissner–Nordström space–time virtual particle–antiparticle pairs are created at the inner horizon of the Reissner–Nordström black hole such that real particles with positive energy and temperature are emitted towards the singularity from the inner horizon and, as a consequence, antiparticles with negative energy are radiated away from the singularity through the inner horizon. We show that these antiparticles will be emitted from the white hole horizon in the maximally extended Reissner–Nordström space–time, at least when the hole is near extremality. The energy spectrum of the antiparticles leads to a positive temperature for the white hole horizon. In other words, our analysis predicts that in addition to the radition effects of black hole horizons, the white hole horizon also radiates. The black hole radiation is caused by the quantum effects at the outer horizon, whereas the white hole radiation is caused by the quantum effects at the inner horizon of the Reissner–Nordström black hole.


Sign in / Sign up

Export Citation Format

Share Document