scholarly journals Solar-wind–magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate

2019 ◽  
Vol 7 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Shengping He ◽  
Huijun Wang ◽  
Fei Li ◽  
Hui Li ◽  
Chi Wang

Abstract Solar irradiance has been universally acknowledged to be dominant by quasi-decadal variability, which has been adopted frequently to investigate its effect on climate decadal variability. As one major terrestrial energy source, solar-wind energy flux into Earth's magnetosphere (Ein) exhibits dramatic interannual variation, the effect of which on Earth's climate, however, has not drawn much attention. Based on the Ein estimated by 3D magnetohydrodynamic simulations, we demonstrate a novelty that the annual mean Ein can explain up to 25% total interannual variance of the northern-hemispheric temperature in the subsequent boreal winter. The concurrent anomalous atmospheric circulation resembles the positive phase of Arctic Oscillation/North Atlantic Oscillation. The warm anomalies in the tropic stratopause and tropopause induced by increased solar-wind–magnetosphere energy persist into the subsequent winter. Due to the dominant change in the polar vortex and mid-latitude westerly in boreal winter, a ‘top-down’ propagation of the stationary planetary wave emerges in the Northern Hemisphere and further influences the atmospheric circulation and climate.

2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2021 ◽  
Author(s):  
Bin Yu ◽  
Xuebin Zhang ◽  
Guilong Li ◽  
Wei Yu

Abstract A recent study of future changes in global wind power using an ensemble of ten CMIP5 climate simulations indicated an interhemispheric asymmetry of wind power changes over the 21st century, featured by power decreases across the Northern Hemisphere mid-latitudes and increases across the tropics and subtropics of the Southern Hemisphere. Here we analyze future global projections of surface mean and extreme winds by means of a single-model initial-condition 50-member ensemble of climate simulations generated with CanESM5, the Canadian model participated in CMIP6. We analyze the ensemble mean and spread of boreal winter mean and extreme wind trends over the next half-century (2021-2070) and explore the contribution of internal climate variability to these trends. Surface wind speed is projected to mostly decrease in northern mid-low latitudes and southern mid-latitudes and increase in northern high latitudes and southern tropical and subtropical regions, with considerable regional variations. Large ensemble spreads are apparent, especially with remarkable differences over northern parts of South America and northern Russia. The interhemispheric asymmetry of wind projections is found in most ensemble members, and can be related to large-scale changes in surface temperature and atmospheric circulation. The extreme wind has similar structure of future projections, whereas its reductions tend to be more consistent over northern mid-latitudes. The projected mean and extreme wind changes are attributed to changes in both externally anthropogenic forced and internal climate variability generated components. The spread in wind projections is partially due to large-scale atmospheric circulation variability.


2018 ◽  
Vol 31 (10) ◽  
pp. 3849-3863 ◽  
Author(s):  
Javier Mellado-Cano ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Ricardo M. Trigo ◽  
Mari Carmen Álvarez-Castro

Abstract This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.


2021 ◽  
Author(s):  
Merav Opher ◽  
James Drake ◽  
Gary Zank ◽  
Gabor Toth ◽  
Erick Powell ◽  
...  

Abstract The heliosphere is the bubble formed by the solar wind as it interacts with the interstellar medium (ISM). Studies show that the solar magnetic field funnels the heliosheath solar wind (the shocked solar wind at the edge of the heliosphere) into two jet-like structures1-2. Magnetohydrodynamic simulations show that these heliospheric jets become unstable as they move down the heliotail1,3 and drive large-scale turbulence. However, the mechanism that produces of this turbulence had not been identified. Here we show that the driver of the turbulence is the Rayleigh-Taylor (RT) instability caused by the interaction of neutral H atoms streaming from the ISM with the ionized matter in the heliosheath (HS). The drag between the neutral and ionized matter acts as an effective gravity which causes a RT instability to develop along the axis of the HS magnetic field. A density gradient exists perpendicular to this axis due to the confinement of the solar wind by the solar magnetic field. The characteristic time scale of the instability depends on the neutral H density in the ISM and for typical values the growth rate is ~ 3 years. The instability destroys the coherence of the heliospheric jets and magnetic reconnection ensues, allowing ISM material to penetrate the heliospheric tail. Signatures of this instability should be observable in Energetic Neutral Atom (ENA) maps from future missions such as IMAP4. The turbulence driven by the instability is macroscopic and potentially has important implications for particle acceleration.


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


2020 ◽  
Vol 33 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Shuguang Wang

AbstractCharacteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.


2019 ◽  
Vol 15 (2) ◽  
pp. 781-793 ◽  
Author(s):  
Aurel Perşoiu ◽  
Monica Ionita ◽  
Harvey Weiss

Abstract. Causal explanations for the 4.2 ka BP event are based on the amalgamation of seasonal and annual records of climate variability that was manifest across global regions dominated by different climatic regimes. However, instrumental and paleoclimate data indicate that seasonal climate variability is not always sequential in some regions. The present study investigates the spatial manifestation of the 4.2 ka BP event during the boreal winter season in Eurasia, where climate variability is a function of the spatiotemporal dynamics of the westerly winds. We present a multi-proxy reconstruction of winter climate conditions in Europe, west Asia, and northern Africa between 4.3 and 3.8 ka. Our results show that, while winter temperatures were cold throughout the region, precipitation amounts had a heterogeneous distribution, with regionally significant low values in W Asia, SE Europe, and N Europe and local high values in the N Balkan Peninsula, the Carpathian Mountains, and E and NE Europe. Further, strong northerly winds were dominating in the Middle East and E and NE Europe. Analyzing the relationships between these climatic conditions, we hypothesize that in the extratropical Northern Hemisphere, the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively blocked the moisture-carrying westerlies from reaching W Asia and enhanced outbreaks of cold and dry winds in that region. The behavior of the winter and summer monsoons suggests that when parts of Asia and Europe were experiencing winter droughts, SE Asia was experiencing similar summer droughts, resulting from failed and/or reduced monsoons. Thus, while in the extratropical regions of Eurasia the 4.2 ka BP event was a century-scale winter phenomenon, in the monsoon-dominated regions it may have been a feature of summer climate conditions.


Sign in / Sign up

Export Citation Format

Share Document