Restoration of Physical Integrity of Rivers

Author(s):  
Lina E. Polvi ◽  
Daniel W. Baker

Physical integrity for rivers refers to a set of active fluvial processes and landforms wherein the channel, floodplain, sediment, and overall spatial configuration maintain a dynamic equilibrium, according to Graf 2001 (cited under Components of Physical Integrity). Physical integrity is achieved when river processes and forms maintain active connections with each other in the present hydrologic regime. The term “physical integrity” was first used in an important piece of legislation in the United States of America, the Clean Water Act of 1977, in which it is stipulated that the nation must restore and maintain the chemical, physical, and biological integrity of the nation’s water. Within the Environmental Protection Agency, the governmental agency charged with carrying out and enforcing the Clean Water Act, and the scientific literature, much of the focus has been on the chemical and biological integrity, with less direct focus on how to restore physical integrity. However, in the late 20th and early 21st centuries, there has been a greater scientific focus on restoration of physical forms and processes in rivers. Restoration of physical integrity encompasses several aspects: reducing fragmentation, ensuring functional physical processes and equilibrium, allowing dynamic processes, and matching restoration to geographic large-scale controls. In practice, restoration of physical integrity can be divided into two main categories—those focused on restoring form by increasing physical heterogeneity or creating a specific planform (e.g., meandering) or bedform (e.g., pool-riffles), and those focused on restoring processes, including sediment transport, flow retention, and flooding in order to maintain forms. Form-based restoration is usually rooted in the assumption that a reference condition can elucidate the forms that best match the processes under similar hydrologic and sediment regimes. Reference conditions can either be historical (i.e., where there is sufficient data on previous channel conditions before the degradation occurred) or geographical—where there is an undisturbed stream reach within the same region with similar climatic, hydrological, geological, and land-use conditions and the reference and degraded reaches have similar drainage areas and valley characteristics (in terms of valley slope and with and hillslope conditions). In addition, process-based restoration goals based on ecosystem functioning or channel classification schemes can be used in designing channel restoration. In areas where the flow regime is heavily altered, by for example dams, flow diversions or land-use conditions, environmental or functional flows have been used to determine which flows (e.g., five-year flood) are necessary to maintain certain physical processes or forms.

2021 ◽  
Vol 13 (4) ◽  
pp. 1878
Author(s):  
Alan R. Hunt ◽  
Meiyin Wu ◽  
Tsung-Ta David Hsu ◽  
Nancy Roberts-Lawler ◽  
Jessica Miller ◽  
...  

The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the enactment of the Clean Water Act, yet includes a clear anti-degradation principle, that pollution should be reduced and eliminated on designated rivers, in cooperation with the federal Environmental Protection Agency and state pollution control agencies. However, the federal Clean Water Act lacks a clear management framework for implementing restoration activities to reduce non-point source pollution, of which bacterial contamination impacts nearly 40% of the Wild and Scenic Rivers. A case study of the Musconetcong River, in rural mountainous New Jersey, indicates that the Wild and Scenic Rivers Act can be utilized to mobilize and align non-governmental, governmental, philanthropic, and private land-owner resources for restoring river water quality. For example, coordinated restoration efforts on one tributary reduced bacterial contamination by 95%, surpassing the TMDL goal of a 93% reduction. Stakeholder interviews and focus groups indicated widespread knowledge and motivation to improve water quality, but resource constraints limited the scale and scope of restoration efforts. The authors postulate that the Partnership framework, enabled in the Wild and Scenic Rivers Act, facilitated neo-endogenous rural development through improving water quality for recreational usage, whereby bottom-up restoration activities were catalyzed via federal designation and resource provision. However, further efforts to address water quality via voluntary participatory frameworks were ultimately limited by the public sector’s inadequate funding and inaction with regard to water and wildlife resources in the public trust.


1988 ◽  
Vol 20 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Rebecca W. Hanmer

The pulp, paper, and paperboard industry in the United States is the larqest industrial user of water with half of the facilities discharging wastewater directly to our Nation's waters. The major pollutants of concern have historically been the conventional pollutants: biochemical oxygen demand (BOD5), total suspended solids (TSS), and pH. Biological treatment systems are currently employed to reduce these pollutants. Sludges generated by these treatment systems have been categorized as nonhazardous and are generally landfilled. Under the Clean Water Act, the Environmental Protection Agency (EPA) has promulgated all the reguired regulations for this industry. The national regulations are applied to individual pulp and paper mills through permits issued by EPA Regional or State staff. Permit limits can be written that are more restrictive than the national regulations to protect local water guality. In its current projects concerning the pulp and paper industry, EPA is focusing on the reduction of toxic pollutants. The Agency is conducting a joint EPA/industry program to study dioxin discharges at bleached kraft mills. The Agency will also undertake a comprehensive review of the pulp and paper regulations in 1988.


1989 ◽  
Vol 24 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Genevieve Laffly

Abstract Regulatory requirements in the United States controlling wastewater pollutants and toxicity resulting from point sources, such as refineries, emanated from passage of the Federal Water Pollution Control Act in 1972 and its subsequent amendments, collectively referred to as the Clean Water Act. The Clean Water Act empowers in the federal U.S. Environmental Protection Agency and states to issue effluents limitation guidelines and water quality standards to point sources that discharge pollutants directly to surface waters. These guidelines and standards are contained in permits issued under the National Pollutant Discharge Elimination System. The current regulatory emphasis on toxics probably will lead to more stringent pretreatment standards and reduced refinery wastewater flow.


1994 ◽  
Vol 29 (8) ◽  
pp. 149-152
Author(s):  
Charles W. Ganze ◽  
Richard L. Brown

In 1972, the Congress of the United States of America passed major legislation called the Clean Water Act, which required all wastewater discharges to meet minimal standards. The Clean Water Act promoted efficiency and cost effectiveness. The Gulf Coast Waste Disposal Authority was created in 1969 by the Legislature of the State of Texas to, among other things, own and operate wastewater disposal systems which would be protective of public health, “terrestrial and aquatic life, the operation of existing industries and the economic development of the state“. Since enactment of the Clean Water Act, other pieces of legislation, rulings by courts of law, and rules established by the U.S. Environmental Protection Agency have thwarted many efforts to operate efficient and cost-effective wastewater treatment facilities. This paper will discuss several of the laws and rules that have discouraged efficiency and cost effectiveness.


Author(s):  
Richard J. Gelting ◽  
Steven C. Chapra ◽  
Paul E. Nevin ◽  
David E. Harvey ◽  
David M. Gute

Public health has always been, and remains, an interdisciplinary field, and engineering was closely aligned with public health for many years. Indeed, the branch of engineering that has been known at various times as sanitary engineering, public health engineering, or environmental engineering was integral to the emergence of public health as a distinct discipline. However, in the United States (U.S.) during the 20th century, the academic preparation and practice of this branch of engineering became largely separated from public health. Various factors contributed to this separation, including an evolution in leadership roles within public health; increasing specialization within public health; and the emerging environmental movement, which led to the creation of the U.S. Environmental Protection Agency (EPA), with its emphasis on the natural environment. In this paper, we consider these factors in turn. We also present a case study example of public health engineering in current practice in the U.S. that has had large-scale positive health impacts through improving water and sanitation services in Native American and Alaska Native communities. We also consider briefly how to educate engineers to work in public health in the modern world, and the benefits and challenges associated with that process. We close by discussing the global implications of public health engineering and the need to re-integrate engineering into public health practice and strengthen the connection between the two fields.


1994 ◽  
Vol 26 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Roy R. Carriker

AbstractThe federal government program for wetlands regulation is administered by the United States Army Corps of Engineers pursuant to Section 404 of the Clean Water Act. Proposals for amending and/or reforming the Section 404 program are included in Congressional deliberations regarding Clean Water Act reauthorization. Specific issues of public policy include the definition of “waters of the United States”, criteria for delineation of jurisdictional wetlands, definition of activities exempt from regulation, mitigation and classification of wetlands, and issues of property rights.


2014 ◽  
Vol 16 (4) ◽  
pp. 797-804

<div> <p>Non-point sources pollution from highway runoff is among the most important reasons for surface and ground waters degradation. Atmospheric deposition, exhaust emissions, pavement wear and tire wear all have been found to be crucial pollutants in highway runoff. The most critical pollutants included in the runoff of interurban roads such as total suspended solids, heavy metals, chlorides and nutrients, together with the factors affecting their concentration are been investigated. Existing legislation about drainage and highway stormwater management in United States and European Union as well as the federal agencies of the United States which have the responsibility to regulate drainage and stormwater management are also presented. Water pollution concerns in the Unites States are mainly addressed through the Federal Water Pollution Control Act of 1972, known as the Clean Water Act. Provisions within the Clean Water Act require all states to implement regulations in order to reduce the pollutant mass loading prior to discharging into water recipients. In European Union the Water Framework Directive 2000/60/EC sets common goals for the water management and created an overall water policy for management at an international level.</p> </div> <p>&nbsp;</p>


2020 ◽  
Vol 51 (1) ◽  
pp. 131-160
Author(s):  
Luke Fowler ◽  
Chris Birdsall

Abstract In the United States, environmental federalism largely relies on a system for policy implementation that allows the federal government to delegate primary program authority (or primacy) to state agencies. Although it is an ingrained feature of several major federal environmental policies, such as the Clean Water Act (CWA), there is little evidence to indicate what impact delegating authorities has on programs. In order to examine this, the authors use a synthetic control technique to determine how actual CWA program outcomes in five states compare to expected outcomes if EPA retained primary authority. Findings indicate that while there were no significant differences in Texas and Oklahoma, state primacy led to improved program outcomes in Florida, but worse outcomes in Maine and South Dakota. Conclusions suggest that primacy has asymmetrical impacts that largely depend on state implementation systems, which carries important implications for environmental federalism.


Sign in / Sign up

Export Citation Format

Share Document