Extreme weather events on seasonal and intraseasonal timescales in the context of climate change

Author(s):  
D.B. Kiktev ◽  
◽  
E.N. Kruglova ◽  
I.A. Kulikova ◽  
A.V. Muravev ◽  
...  

The automatic identification of objects associated with various extreme weather events (EWE) on seasonal and intraseasonal timescales is done based on surface air temperature and precipitation datasets (NCEP/NCAR daily reanalysis fields for the Northern Hemisphere). Some features of the spatial and temporal variability of the extreme characteristics of temperature and precipitation regimes are considered in the context of climate change. An inventory of extreme events is carried out for the Northern Hemisphere in 1981–2019 depending on the spatial extent, duration, and intensity of EWEs. The years with the most striking events are noted, and a brief description of their specific features is given. The results will be used to analyze the EWE predictability in the context of the verification of long-range weather forecasts. Keywords: extreme weather events, climate change, identification of extreme events, long-range weather forecasts

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244512
Author(s):  
Luis Alexis Rodríguez-Cruz ◽  
Meredith T. Niles

Understanding how perceptions around motivation, capacity, and climate change’s impacts relate to the adoption of adaptation practices in light of experiences with extreme weather events is important in assessing farmers’ adaptive capacity. However, very little of this work has occurred in islands, which may have different vulnerabilities and capacities for adaptation. Data of surveyed farmers throughout Puerto Rico after Hurricane Maria (n = 405, 87% response rate) were used in a structural equation model to explore the extent to which their adoption of agricultural practices and management strategies was driven by perceptions of motivation, vulnerability, and capacity as a function of their psychological distance of climate change. Our results show that half of farmers did not adopt any practice or strategy, even though the majority perceived themselves capable and motivated to adapt to climate change, and understood their farms to be vulnerable to future extreme events. Furthermore, adoption was neither linked to these adaptation perceptions, nor to their psychological distance of climate change, which we found to be both near and far. Puerto Rican farmers’ showed a broad awareness of climate change’s impacts both locally and globally in different dimensions (temporal, spatial, and social), and climate distance was not linked to reported damages from Hurricane Maria or to previous extreme weather events. These results suggest that we may be reaching a tipping point for extreme events as a driver for climate belief and action, especially in places where there is a high level of climate change awareness and continued experience of compounded impacts. Further, high perceived capacity and motivation are not linked to actual adaptation behaviors, suggesting that broadening adaptation analyses beyond individual perceptions and capacities as drivers of climate adaptation may give us a better understanding of the determinants to strengthen farmers’ adaptive capacity.


Author(s):  
Friederike Otto

Natural disasters and extreme weather events have been of great societal importance throughout history and often brought everyday life to a catastrophic halt, in a way sometimes comparable to wars and epidemics, only without the lead time. Extreme weather events with large impacts serve as an anchor point of the collective memory of the population in the affected area. Every northern German of the right age remembers the storm surge of 1962 and where they were at the time and has friends or family effected by the event. The “dust bowl” of the 1930s with extensive droughts and heat waves shaped the life of a generation in the United States, and the Sahel droughts in the 1960s and 1970s led to famine and dislocation of population on a massive scale the region arguably never quite recovered from. Hurricane Hyian in 2013 is said to have directly influenced the outcome of the annual Conference of the Parties (COP) United Nation Framework Convention for Climate Change Negotiations in Warsaw, leading to the inclusion of a mechanism to deal with loss and damage from climate-related disasters. Though earthquakes are still fairly unpredictable on short timescales, this is not the case for weather events. Weather forecasts today are so good that we normally know the time and location of the landfall of a hurricane within a 100-mile radius days in advance. Improvements in the prediction of slow-onset events such as droughts (which depend on the rainfall over a large region and whole season) are less striking but have still improved dramatically in the late 20th and early 21st centuries. One of the major reasons for the large increase in the accuracy of weather forecasts is the exponential increase in computing power, which allows scientists to predict and study extreme weather events using complex computer models, simulating possible weather events under certain conditions to understand the statistics of and physical mechanisms behind extreme events. Extreme events are by definition rare and thus impossible to understand from historical records of weather observation alone. Despite the progress on our understanding of and ability to predict extreme weather events, substantial uncertainties remain. Two aspects are of particular importance. Firstly, we know that the climate is changing, having observed almost a one-degree increase in global mean temperature. However, global mean temperature doesn’t kill anyone, extreme weather events do. Their frequency and intensity is changing and will continue to change, but the extent of these changes depends on a host of both global and local factors. Secondly, whether or not a rare weather event leads to extreme impacts depends largely on the vulnerability and exposure of the affected societies. If these are high, even a perfectly forecasted weather event leads to disaster.


Author(s):  
Peter J. Webster ◽  
Jun Jian

The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change.


2007 ◽  
Vol 31 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Neville Nicholls ◽  
Lisa Alexander

In 1990 and 1992 the Intergovernmental Panel on Climate Change (IPCC), in its first assessment of climate change and its supplement, did not consider whether extreme weather events had increased in frequency and/or intensity globally, because data were too sparse to make this a worthwhile exercise. In 1995 the IPCC, in its second assessment, did examine this question, but concluded that data and analyses of changes in extreme events were ‘not comprehensive’and thus the question could not be answered with any confidence. Since then, concerted multinational efforts have been undertaken to collate, quality control, and analyse data on weather and climate extremes. A comprehensive examination of the question of whether extreme events have changed in frequency or intensity is now more feasible than it was 15 years ago. The processes that have led to this position are described, along with current understanding of possible changes in some extreme weather and climate events.


2018 ◽  
Author(s):  
Matthew L. Forister ◽  
James A. Fordyce ◽  
Chris C. Nice ◽  
James H. Thorne ◽  
David P. Waetjen ◽  
...  

AbstractClimate change is challenging plants and animals not only with increasing temperatures, but also with shortened intervals between extreme weather events. Relatively little is known about diverse assemblages of organisms responding to extreme weather, and even less is known about landscape and life history properties that might mitigate effects of extreme weather. We find that northern California butterflies were impacted by a millennium-scale drought differentially at low and high elevations. At low elevations, phenological shifts facilitated persistence and even recovery during drought, while at higher elevations a shortened flight season was associated with decreases in species richness. Phenological and faunal dynamics are predicted by temperature and precipitation, thus advancing the possibility of understanding and forecasting biological responses to extreme weather.


2021 ◽  
Author(s):  
Mirjam Vujadinović Mandić ◽  
Ana Vuković Vimić ◽  
Marija Ćosić ◽  
Zorica Ranković-Vasić ◽  
Vladimir Djurdjević ◽  
...  

<p>Agriculture is exposed to numerous risks related to climate change. Extreme weather events, such as droughts, heat waves, intensive rainfall and floods, as well as slow changes (increased temperatures, changes in precipitation regime and generally increased climate variability) affect the year-to-year stability of quality and quantity of the plant production.</p><p>Serbia is located in one of the regions that are recognized as hot spots where climate change unfolds faster than the global average. A survey completed by more than 100 agricultural producers in Serbia showed that in the last 20 years they were affected by mostly negative impact of climate change and suffered reduced quality and/or quantity of yields, mostly from droughts, high summer temperatures, spring frosts and storms with strong winds and hail.</p><p>Adaptation measures applied to reduce the risks of extreme weather events are mainly those subsidized by the Government (anti-hail nets, irrigation systems, etc.), recommended by the Agriculture Advisory Service or other independent expert (tillage methods, sowing time, time and water amount used for irrigation, use of fertilizers, etc.), as well as those learn from their own past experience (selection of varieties, crop rotation).</p><p>Most respondents regularly follow short-term weather forecasts from various sources and plan field activities accordingly. They are mainly familiar with the monthly forecast issued by the Republic Hydrometeorological Service of Serbia (RHMSS), which is also published by several newspapers. This forecast is based on the statistical method of analogies and the producers believe that they cannot rely on it in long-term planning. In general, they lack confidence in the long-term weather forecasts, mainly due to the fact that over the past years Serbian media were overwhelmed with tendentious seasonal forecasts from unreliable sources.</p><p>On the other hand, the survey showed that many producers would appreciate and use the seasonal weather outlooks if it was tailored according to their specific needs considering species they cultivate and local climate characteristics. They would like clearly presented information, in simple graph or map form, followed by textual advices on agro-technical measures they could adopt in order to reduce foreseen weather-related risks.</p><p>Integrated Agro-meteorological Prediction System (IAPS) is a project financed by the Science Fund of the Republic of Serbia through the Program for excellent project of young researchers (PROMIS) that aims to reduce the risk of weather-related events and increase climate resilience of Serbian agriculture, as well as to advance the use of climate information by producers and agricultural advisers in long-term planning. The idea is to create a coupled system od dynamically downscaled seasonal weather forecasts and crop models, accompanied with a set of products specifically tailored to support long-term decision making in agriculture. At the end of the project, the developed system and its products will be offered to RHMSS to include in the operative forecast system.</p>


2019 ◽  
Vol 158 (2) ◽  
pp. 213-233
Author(s):  
Myanna Lahsen ◽  
Gabriela de Azevedo Couto ◽  
Irene Lorenzoni

AbstractAnalyzing the politics and policy implications in Brazil of attributing extreme weather events to climate change, we argue for greater place-based sensitivity in recommendations for how to frame extreme weather events relative to climate change. Identifying geographical limits of current recommendations to emphasize the climate role in such events, we explore Brazilian framings of the two tragic national disasters, as apparent in newspaper coverage of climate change. We find that a variety of contextual factors compel environmental leaders and scientists in Brazil to avoid and discourage highlighting the role of climate change in national extreme events. Against analysts’ general deficit-finding assumptions, we argue that the Brazilian framing tendency reflects sound strategic, socio-environmental reasoning, and discuss circumstances in which attributing such events to climate change—and, by extension, attribution science—can be ineffective for policy action on climate change and other socio-environmental issues in need of public pressure and preventive action. The case study has implications beyond Brazil by begging greater attention to policies and politics in particular places before assuming that attribution science and discursive emphasis on the climate role in extreme events are the most strategic means of achieving climate mitigation and disaster preparedness. Factors at play in Brazil might also structure extreme events attribution politics in other countries, not least some other countries of the global South.


Sign in / Sign up

Export Citation Format

Share Document