scholarly journals 1218. Retapamulin as a Potential Decolonizing Agent: Activity against Mupirocin-Resistant Strains From Pediatric Patients With Methicillin-Resistant Staphylococcus aureus Infection

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S369-S370
Author(s):  
Ami Patel ◽  
Jennifer Lighter-Fisher ◽  
Yi Fulmer ◽  
Richard Copin ◽  
Adam Ratner ◽  
...  

Abstract Background Controlling methicillin-resistant Staphylococcus aureus (MRSA) colonization is a common strategy to prevent transmission and recurrent infection. Standard decolonization regimens include nasal application of mupirocin ointment; however, increasing rates of mupirocin-resistance (Mup-R) have been noted globally. At our institution there has been an increase in community-acquired MRSA (CA-MRSA) infections among children living in Brooklyn, New York. A genotypic geographic cluster of an outbreak clone of the CA-MRSA strain USA 300 with a high rate (>85%) of mupirocin resistance, mediated by the plasmid borne mupA gene, was identified prompting investigation into an alternative decolonizing agent. We sought to investigate retapamulin, a topical pleuromutilin antibiotic, which has been shown to be effective against S. aureus with in vitro and in vivo activity against MRSA and a low propensity to develop resistance. Methods Broth microdilution was used to determine the minimum inhibitory concentrations (MIC) of retapamulin against 53 Mup-R MRSA isolates collected from pediatric patients (aged 9 months–17 years) presenting to our institution over an 18 month period with clinical MRSA infection. Susceptibility defined as ≤0.5 mg/L susceptible (EUCAST). Whole genome sequence data were analyzed for the presence of rplC and cfr gene mutations known to confer resistance to retapamulin. Results All 53 isolates were susceptible to retapamulin. 49/53 (92%) strains were inhibited at MIC 0.25 mg/L, 2/53 (4%) at MIC 0.125 mg/L, and 2/53 (4%) at MIC 0.5 mg/L. DNA sequence analysis showed that one isolate had a first-step mutation in the rplC gene, but it was not associated with reduced phenotypic susceptibility to retapamulin, as the MIC of that isolate was 0.25 mg/L. Conclusion Retapamulin demonstrated excellent in vitro activity against a genotypic cluster of Mup-R isolates from pediatric patients presenting to our institution with MRSA infection. These data suggest that retapamulin may be a promising alternative decolonization therapy for MRSA and a viable option to prevent the spread of mupirocin-resistant MRSA clones. Further research includes an ongoing randomized, placebo-controlled trial testing the in vivo efficacy of retapamulin as a nasal and perirectal decolonizing agent in children. Disclosures A. Patel, Aqua Pharmaceuticals: Investigator inititiated grant, Research grant. J. Lighter-Fisher, Aqua Pharmaceuticals: Investigator Initiated Grant, Research grant.

2009 ◽  
Vol 53 (11) ◽  
pp. 4712-4717 ◽  
Author(s):  
Céline Vidaillac ◽  
Steve N. Leonard ◽  
Michael J. Rybak

ABSTRACT Ceftaroline is a broad-spectrum injectable cephalosporin exhibiting bactericidal activity against a variety of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Using a two-compartment in vitro pharmacokinetic/pharmacodynamic (PK/PD) model, we evaluated the activity of ceftaroline at 600 mg every 8 h (q8h) and q12h in comparison with that of vancomycin at 1,000 mg q12h over a 72-h time period against six clinical MRSA isolates, including two heterogeneous vancomycin-intermediate S. aureus (hVISA) isolates. The MIC and minimum bactericidal concentration ranged between 0.125 to 2 and 0.5 to 2 μg/ml for ceftaroline and vancomycin, respectively. In the PK/PD model, ceftaroline was superior to vancomycin against all isolates (P < 0.05), except one to which it was equivalent. No difference in activity was observed between both q8 and q12h dosing regimens of ceftaroline. Bacterial regrowth was observed after 32 h for two isolates treated with ceftaroline. This regrowth was uncorrelated to resistance, instability of the drug, or tolerance. However, subpopulations with higher MICs to ceftaroline were found by population analysis for these two isolates. Finally, and in contrast to ceftaroline, MIC elevations up to 8 to 12 μg/ml were observed with vancomycin for the hVISA isolates. In conclusion, in addition to a lower potential to select resistant mutants, ceftaroline demonstrated activity equal to or greater than vancomycin against MRSA isolates. Although further in vitro and in vivo investigations are warranted, ceftaroline appears to be a promising alternative for the treatment of MRSA infections.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3277
Author(s):  
Yunxing Fu ◽  
Chunqing Leng ◽  
Yuan Fan ◽  
Xia Ma ◽  
Xianghui Li ◽  
...  

Staphylococcus aureus (S. aureus) is a major human pathogen that requires new antibiotics with unique mechanism. A new pleuromutilin derivative, 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proved as a potent antibacterial agent using in vitro and in vivo assays. In the present study, DPTM was further in vitro evaluated against methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms and outperformed tiamulin fumarate, a pleuromutilin drug used for veterinary. Moreover, a murine skin wound model caused by MRSA infection was established, and the healing effect of DPTM was investigated. The results showed that DPTM could promote the healing of MRSA skin infection, reduce the bacterial burden of infected skin MRSA and decrease the secretion of IL-6 and TNF-α inflammatory cytokines in plasma. These results provided the basis for further in-depth drug targeted studies of DPTM as a novel antibacterial agent.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7651-7659 ◽  
Author(s):  
Xujuan Guo ◽  
Bing Cao ◽  
Congyu Wang ◽  
Siyu Lu ◽  
Xianglong Hu

Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are in situ developed for efficient elimination of MRSA infection, which is reflected by dual-modality magnetic resonance and photoacoustic imaging.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1093
Author(s):  
Daniel Hassan ◽  
Calvin A. Omolo ◽  
Victoria Oluwaseun Fasiku ◽  
Ahmed A Elrashedy ◽  
Chunderika Mocktar ◽  
...  

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document