Operative Technique and Workflow of Deep Brain Stimulation Surgery With Pre-existing Cochlear Implants

2019 ◽  
Vol 19 (2) ◽  
pp. 143-149
Author(s):  
Erik Bolier ◽  
Jessica A Karl ◽  
R Mark Wiet ◽  
Alireza Borghei ◽  
Leo Verhagen Metman ◽  
...  

Abstract Background Deep brain stimulation (DBS) surgery in patients with pre-existing cochlear implants (CIs) poses various challenges. We previously reported successful magnetic resonance imaging (MRI)-based, microelectrode recording (MER)-guided subthalamic DBS surgery in a patient with a pre-existing CI. Other case reports have described various DBS procedures in patients with pre-existing CIs using different techniques, leading to varying issues to address. A standardized operative technique and workflow for DBS surgery in the setting of pre-existing CIs is much needed. Objective To provide a standardized operative technique and workflow for DBS lead placement in the setting of pre-existing CIs. Methods Our operative technique is MRI-based and MER-guided, following a workflow involving coordination with a neurotology team to remove and re-implant the internal magnets of the CIs in order to safely perform DBS lead placement, altogether within a 24-h time frame. Intraoperative nonverbal communication with the patient is easily possible using a computer monitor. Results A 65-yr old woman with a 10-yr history of craniocervical dystonia and pre-existing bilateral CIs underwent successful bilateral pallidal DBS surgery at our institution. No merging errors or difficulties in targeting globus pallidus internus were experienced. Also, inactivated CIs do not interfere with MER nor with stimulation, and intraoperative communication with the patient using a computer monitor proved feasible and satisfactory. Conclusion DBS procedures are safe and feasible in patients with pre-existing CIs if precautions are taken following our workflow.

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Ha Son Nguyen ◽  
Harvey Woehlck ◽  
Peter Pahapill

Background. Symptomatic bradycardia and hypotension in neurosurgery can produce severe consequences if not managed appropriately. The literature is scarce regarding its occurrence during deep brain stimulation (DBS) surgery.Case Presentation. A 67-year-old female presented for left DBS lead placement for essential tremors. During lead implantation, heart rate and blood pressure dropped rapidly; the patient became unresponsive and asystolic. Chest compressions were initiated and epinephrine was given. Within 30 seconds, the patient became hemodynamically stable and conscious. A head CT demonstrated no acute findings. After deliberation, a decision was made to complete the procedure. Assuming the etiology of the episode was the Bezold-Jarisch reflex (BJR), appropriate accommodations were made. The procedure was completed uneventfully.Conclusion. The episode was consistent with a manifestation of the BJR. The patient had a history of neurocardiogenic syncope and a relatively low-volume state, factors prone to the BJR. Overall, lead implantation can still occur safely if preventive measures are employed.


2017 ◽  
Vol 42 (videosuppl2) ◽  
pp. V3
Author(s):  
Alexander G. Chartrain ◽  
Ahmed J. Awad ◽  
Jonathan J. Rasouli ◽  
Robert J. Rothrock ◽  
Brian H. Kopell

A 59-year-old woman with a 30-year history of essential tremor refractory to medical therapy underwent staged deep brain stimulation of the ventralis intermedius nucleus of the thalamus (VIM). Left-sided lead placement was performed first. Once in the operating room, microelectrode recording (MER) was performed to confirm the appropriate trajectory and identify the VIM border with the ventralis caudalis nucleus. MER was repeated after repositioning 2 mm anteriorly to reduce the likelihood of stimulation-induced paresthesias. Physical examination prior to permanent lead placement demonstrated micro-lesion effect, suggesting optimal trajectory. After implantation of the permanent lead, physical examination showed excellent results.The video can be found here: https://youtu.be/nn3KRdmRCZ4.


2019 ◽  
Vol 10 ◽  
pp. 68 ◽  
Author(s):  
Jonathan J. Lee ◽  
Bradley Daniels ◽  
Ryan J. Austerman ◽  
Brian D. Dalm

Background: Deep brain stimulation (DBS) lead edema can be a serious, although rare, complication in the postoperative period. Of the few cases that have been reported, the range of presentation has been 33 h–120 days after surgery. Case Description: We report a case of a 75-year-old male with a history of Parkinson’s disease who underwent bilateral placement of subthalamic nucleus DBS leads that resulted in symptomatic, left-sided lead edema 6 h after surgery, which is the earliest reported case. Conclusions: DBS lead edema is noted to be a self-limiting phenomenon. It is critical to recognize the possibility of lead edema as a cause of postoperative encephalopathy even in the acute phase after surgery. Although it is important to rule out other causes of postoperative changes in the patient examination, the recognition of lead edema can help to avoid extraneous diagnostic tests or DBS lead revision or removal.


Author(s):  
Nicole C. R. McLaughlin ◽  
Benjamin D. Greenberg

Interest in psychiatric neurosurgery has waxed and waned since the 1930s. This chapter reviews the history of these methods, with a focus on OCD. This review of lesion procedures and deep brain stimulation includes neuropsychological and neuroimaging research in the context of putative neurocircuitry underlying symptoms and response to treatment. The chapter highlights how an abundance of caution is needed, as well as key issues in long-term management of patients so treated.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2670
Author(s):  
Thomas Quirin ◽  
Corentin Féry ◽  
Dorian Vogel ◽  
Céline Vergne ◽  
Mathieu Sarracanie ◽  
...  

This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.


2011 ◽  
Vol 26 (S2) ◽  
pp. 1149-1149
Author(s):  
U. Moser ◽  
M. Savli ◽  
R. Lanzenberger ◽  
S. Kasper

IntroductionDeep brain stimulation (DBS) is a promising therapy option for otherwise treatment-resistant neuropsychiatrie disorders, especially in obsessive-compulsive disorder (OCD), major depression (TRD) and Tourette's Syndrome (TS).ObjectiveThe brain coordinates of the DBS targets are mainly reported using measurements in original, unnormalized brains. In the neuroimaging community stereotactic data are mainly indicated in the standardized Montreal Neurological Institute (MNI) space, i.e. a three-dimensional proportional grid system.AimsImproved comparability between targets in DBS studies and molecular and functional neuroimaging data from PET, SPECT, MRI, fMRI, mostly published with stereotactic data.MethodsA comprehensive and systematic literature search for published DBS case reports or studies in TRD, OCD and TS was performed. We extracted the tip positions of electrode leads as provided in the publications or by the authors, and transferred individual coordinates to the standard brain in the MNI space.Results46 publications fulfilled the inclusion criteria. The main targets for the specific disorders and one or two examples of their calculated MNI coordinates are indicated in the table:[MNI coordinates of the main DBS targets]ConclusionsWe provide DBS data of neuropsychiatrie disorders in the MNI space, improving the comparability to molecular, functional and structural neuroimaging data.


2020 ◽  
Vol 11 ◽  
pp. 444
Author(s):  
Samir Kashyap ◽  
Rita Ceponiene ◽  
Paras Savla ◽  
Jacob Bernstein ◽  
Hammad Ghanchi ◽  
...  

Background: Tardive tremor (TT) is an underrecognized manifestation of tardive syndrome (TS). In our experience, TT is a rather common manifestation of TS, especially in a setting of treatment with aripiprazole, and is a frequent cause of referrals for the evaluation of idiopathic Parkinson disease. There are reports of successful treatment of tardive orofacial dyskinesia and dystonia with deep brain stimulation (DBS) using globus pallidus interna (GPi) as the primary target, but the literature on subthalamic nucleus (STN) DBS for tardive dyskinesia (TD) is lacking. To the best of our knowledge, there are no reports on DBS treatment of TT. Case Description: A 75-year-old right-handed female with the medical history of generalized anxiety disorder and major depressive disorder had been treated with thioridazine and citalopram from 1980 till 2010. Around 2008, she developed orolingual dyskinesia. She was started on tetrabenazine in June 2011. She continued to have tremors and developed Parkinsonian gait, both of which worsened overtime. She underwent DBS placement in the left STN in January 2017 with near-complete resolution of her tremors. She underwent right STN implantation in September 2017 with similar improvement in symptoms. Conclusion: While DBS-GPi is the preferred treatment in treating oral TD and dystonia, DBS-STN could be considered a safe and effective target in patients with predominating TT and/or tardive Parkinsonism. This patient saw a marked improvement in her symptoms after implantation of DBS electrodes, without significant relapse or recurrence in the years following implantation.


2018 ◽  
Author(s):  
Laleh Golestanirad ◽  
Boris Keil ◽  
Sean Downs ◽  
John Kirsch ◽  
Behzad Elahi ◽  
...  

AbstractPatients with deep brain stimulation (DBS) implants can significantly benefit from magnetic resonance imaging (MRI) examination, however, access to MRI is restricted in this patients because of safety concerns due to RF heating of the leads. Recently we introduced a patient-adjustable reconfigurable MRI coil system to reduce the SAR at the tip of deep brain stimulation implants during MRI at 1.5T. A simulation study with realistic models of single (unilateral) DBS leads demonstrated a substantial reduction in the local SAR up to 500-fold could be achieved using the coil system compared to quadrature birdcage coils. Many patients however, have bilateral DBS implants and the question arises whether the rotating coil system can be used in for them. This work reports the results of phantom experiments measuring the temperature rise at the tips of bilateral DBS implants with realistic trajectories extracted from postoperative CT images of 10 patients (20 leads in total). A total of 200 measurements were performed to record temperature rise at the tips of the leads during 2 minutes of scanning with the coil rotated to cover all accessible rotation angles. In all patients, we were able to find an optimum coil rotation angle and reduced the heating of both left and right leads to a level below the heating produced by the body coil. An average heat reduction of 65% was achieved for bilateral leads. Reconfigurable coil technology introduces a promising approach for imaging of patients with DBS implants.


Sign in / Sign up

Export Citation Format

Share Document