Element 85—Astatine

Author(s):  
Eric Scerri

The story surrounding element 85 is one of the most complex and interesting among our seven elements. The various claims for its discovery reveal many of the nationalistic traits that we have seen in the case of other elements, most notably the controversy surrounding the discovery of hafnium, element 72. But element 85 gives our study a greater depth than has yet been revealed by the already covered elements. What this story shows is that the nationalistic prejudices persist to this day in many respects and that the identity of the “discoverer” of the element very much depends on the nationality of the textbook that one might consult. It is also an element for which the majority of sources give an incorrect account in declaring Corson, MacKenzie, and Segrè as the true discoverers. The account I will detail owes much to the recent work of two young chemists, Brett Thornton and Shawn Burdette, whose 2010 article I have drawn heavily from. As in the case of many of the seven elements already surveyed, the view that Moseley’s experimental demonstration of the concept of atomic number resolved all issues in a categorical fashion is once again shown to be highly misleading. The position of element 85 in the periodic table shows it to lie among the halogens. Not surprisingly, therefore, the early researchers believed that they would find the element in similar locations to other halogens such as bromine and iodine, namely in the oceans or in sands washed up by oceans. Moreover, it was fully expected that the new element would behave like a typical halogen to form diatomic molecules and that it would have a low boiling point. The first major claim for the discovery of the element was made by Fred Allison, the same researcher who also erroneously claimed that he had discovered element 87. And just as in the case of element 87, Allison claimed to have found the new element using his own magneto-optical method, involving a time delay in the Faraday effect, which is to say the rotation of plane polarized light carried out by the application of a magnetic field to any particular solution of a substance.

2018 ◽  
Vol 26 (2) ◽  
pp. 267-283
Author(s):  
M. Tezer-Sezgin ◽  
Merve Gürbüz

Abstract We consider the steady, laminar, convection ow in a long channel of 2D rectangular constricted cross-section under the inuence of an applied magnetic field. The Navier-Stokes equations including Lorentz and buoyancy forces are coupled with the temperature equation and are solved by using linear radial basis function (RBF) approximations in terms of the velocity, pressure and the temperature of the fluid. RBFs are used in the approximation of the particular solution which becomes also the approximate solution of the problem. Results are obtained for several values of Grashof number (Gr), Hartmann number (M) and the constriction ratios (CR) to see the effects on the ow and isotherms for fixed values of Reynolds number and Prandtl number. As M increases, the ow is flattened. An increase in Gr increases the magnitude of the ow in the channel. Isolines undergo an inversion at the center of the channel indicating convection dominance due to the strong buoyancy force, but this inversion is retarded with the increase in the strength of the applied magnetic field. When both Hartmann number and constriction ratio are increased, ow is divided into more loops symmetrically with respect to the axes.


2021 ◽  
Vol 4 (4) ◽  
pp. 5-10
Author(s):  
T. Il'ina ◽  
P. Orlov ◽  
A. Chizhov

the article deals with the properties of ferromagnetics and their behaviour in an external magnetic field. The conditions under which magnetism occurs in materials are shown and the choice of material for a magneto-strictive emitter is justified. The composition and properties of permendur as the most suitable material for the manufacture of magnetostrictive radiators are presented. It is shown that for the manufacture of the magnetostrictor it is feasible to use electro-erosion equipment for cutting packages from permendur com-pared to the costly and cumbersome method of stamping in a matrix of a particular shape. Tests were carried out on a duralumin heat exchanger with artificial frostbite. The evaporator was fed with refrigerant at 0.22 MPa, which corresponds to the boiling point of R 410a refrigerant at 35°C, by means of a refrigerant line made of aluminium pipes. Frostbite was then produced by applying moist air using an ultrasonic steam gen-erator. Frost on the evaporator surface is discharged by means of a magnetostrictor mounted on the heat ex-changer. The proposed method allows for the most effective cleaning of the surfaces of heat exchangers of ventilation equipment from scale, fouling and other mechanical deposits by means of mechanical vibrations.


2006 ◽  
Vol 24 (11) ◽  
pp. 3011-3026 ◽  
Author(s):  
F. Pitout ◽  
C. P. Escoubet ◽  
B. Klecker ◽  
H. Rème

Abstract. We present a statistical study of four years of Cluster crossings of the mid-altitude cusp. In this first part of the study, we start by introducing the method we have used a) to define the cusp properties, b) to sort the interplanetary magnetic field (IMF) conditions or behaviors into classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Out of the 920 passes that we have analyzed, only 261 fulfill our criteria and are considered as cusp crossings. We look at the size, location and dynamics of the mid-altitude cusp under various IMF orientations and solar wind conditions. For southward IMF, Bz rules the latitudinal dynamics, whereas By governs the zonal dynamics, confirming previous works. We show that when |By| is larger than |Bz|, the cusp widens and its location decorrelates from By. We interpret this feature in terms of component reconnection occurring under By-dominated IMF. For northward IMF, we demonstrate that the location of the cusp depends primarily upon the solar wind dynamic pressure and upon the Y-component of the IMF. Also, the multipoint capability of Cluster allows us to conclude that the cusp needs typically more than ~20 min to fully adjust its location and size in response to changes in external conditions, and its speed is correlated to variations in the amplitude of IMF-Bz. Indeed, the velocity in °ILAT/min of the cusp appears to be proportional to the variation in Bz in nT: Vcusp=0.024 ΔBz. Finally, we observe differences in the behavior of the cusp in the two hemispheres. Those differences suggest that the cusp moves and widens more freely in the summer hemisphere.


Author(s):  
Eric Scerri

The article concerns various proposals that have been made with the aim of improving the currently standard 18-column periodic table. We begin with a review of 8-, 18- and 32-column formats of the periodic table. This is followed by an examination of a possible, although rather impractical, 50-column table and how it could be used to consider the changes to the periodic table that have been predicted by Pyykkö in the domain of superheavy elements. Other topics reviewed include attempts to derive the Madelung rule as well as an analysis of what this rule actually provides. Finally, the notion of an ‘optimal’ periodic table is discussed in the context of recent work by philosophers of science who have examined the nature of classifications in general, as well as the notion of natural kinds. The article takes an unapologetically philosophical approach rather than focusing on specific data concerning the elements. Nevertheless, some pragmatic issues and educational aspects of the periodic table are also examined. This article is part of the theme issue ‘Mendeleev and the periodic table’.


Rudorf, in a paper on the rare gases and the equation of state, has drawn attention to the high value found by Ramsay and Travers for the density of liquid xenon at its boiling point. As is well known the atomic volume in any group of elements in the periodic table either increases regularly with rise of atomic weight or remains approximately constant, so that it is to be expected that the atomic volume of xenon would be greater than of krypton, since the value for krypton exceeds that of argon. If Rudorf's calculated value for the density of neon is taken into account, this anomaly becomes more striking, as is shown from the following table taken from his paper:-


1996 ◽  
Author(s):  
Jian Fu ◽  
Marius P. Schamschula ◽  
H. John Caulfield ◽  
Gajendra D. Savant ◽  
Tomasz P. Jannson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document