An Abiding Affection

2021 ◽  
pp. 7-14
Author(s):  
Thomas E. Schindler

This chapter provides a brief outline of Esther Zimmer’s early life. Born in 1922 to immigrant Jewish parents who had moved from Manhattan’s Lower East Side to the South Bronx, she demonstrated a talent for languages at an early age, learning biblical Hebrew from her grandfather and later distinguishing herself in Spanish and French. Despite her professors’ expectations that she become a foreign language teacher, Zimmer chose to become a scientist. Her love affair with microorganisms began in the mycology laboratory of the New York Botanical Gardens, her abiding affection for bacteria, especially E. coli K-12, memorialized in the beach house named Kappa Dodici, Italian for K-12. For Esther, this particular bacterial strain displayed the treasures of bacterial sex uncovered by her research. Esther cherished the joy of discovery far beyond academic tenure or recognition. Like renowned physicist Richard Feynman, her prime motivation for doing laboratory research was “the sheer pleasure of finding things out.”

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


2021 ◽  
pp. 025576142098622
Author(s):  
Hal Abeles ◽  
Lindsay Weiss-Tornatore ◽  
Bryan Powell

As popular music education programs become more common, it is essential to determine what kinds of professional development experiences that are designed to help teachers include popular music into their music education classrooms are effective—keeping in mind that the inclusion of popular music in K–12 classrooms requires a change not only in instrumentation and repertoire but also pedagogical approaches. This study examined the effects of a popular music professional development initiative on more than 600 New York City urban music teachers’ musicianship, their pedagogy, and their leadership skills throughout one school year. Results revealed increases in all three areas, most notably in teachers’ musicianship. The study also showed an increase in teachers’ positive perceptions about their music programs, specifically, their level of excitement about the state of their music program and that their music program was more effective at meeting their students’ needs than it had been previously.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Carlos-Francisco Méndez-Cruz ◽  
Antonio Blanchet ◽  
Alan Godínez ◽  
Ignacio Arroyo-Fernández ◽  
Socorro Gama-Castro ◽  
...  

Abstract Transcription factors (TFs) play a main role in transcriptional regulation of bacteria, as they regulate transcription of the genetic information encoded in DNA. Thus, the curation of the properties of these regulatory proteins is essential for a better understanding of transcriptional regulation. However, traditional manual curation of article collections to compile descriptions of TF properties takes significant time and effort due to the overwhelming amount of biomedical literature, which increases every day. The development of automatic approaches for knowledge extraction to assist curation is therefore critical. Here, we show an effective approach for knowledge extraction to assist curation of summaries describing bacterial TF properties based on an automatic text summarization strategy. We were able to recover automatically a median 77% of the knowledge contained in manual summaries describing properties of 177 TFs of Escherichia coli K-12 by processing 5961 scientific articles. For 71% of the TFs, our approach extracted new knowledge that can be used to expand manual descriptions. Furthermore, as we trained our predictive model with manual summaries of E. coli, we also generated summaries for 185 TFs of Salmonella enterica serovar Typhimurium from 3498 articles. According to the manual curation of 10 of these Salmonella typhimurium summaries, 96% of their sentences contained relevant knowledge. Our results demonstrate the feasibility to assist manual curation to expand manual summaries with new knowledge automatically extracted and to create new summaries of bacteria for which these curation efforts do not exist. Database URL: The automatic summaries of the TFs of E. coli and Salmonella and the automatic summarizer are available in GitHub (https://github.com/laigen-unam/tf-properties-summarizer.git).


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


2002 ◽  
Vol 74 (6) ◽  
pp. 899-905 ◽  
Author(s):  
Julio Collado-Vides ◽  
Gabriel Moreno-Hagelsieb ◽  
Arturo Medrano-Soto

Escherichia coli is a free-living bacterium that condensates a large legacy of knowledge as a result of years of experimental work in molecular biology. It represents a point of departure for analyses and comparisons with the ever-increasing number of finished microbial genomes. For years, we have been gathering knowledge from the literature on transcriptional regulation and operon organization in E. coli K-12, and organizing it in a relational database, RegulonDB. RegulonDB contains information of 20­25 % of the expected total sets of regulatory interactions at the level of transcription initiation. We have used this knowledge to generate computational methods to predict the missing sets in the genome of E. coli, focusing on prediction of promoters, regulatory sites, regulatory proteins, operons, and transcription units. These predictions constitute separate pieces of a single puzzle. By putting them all together, we shall be able to predict the complete set of regulatory interactions and transcription unit organization of E. coli. Orthologous genes in other genomes of known co-regulated sets of genes in E. coli, along with their corresponding predicted operons, and their predicted transcriptional regulators, shall permit the extension of the previous goal to many more microbial genomes.


1966 ◽  
Vol 56 (6) ◽  
pp. 1852-1858 ◽  
Author(s):  
H. M. Kalckar ◽  
P. Laursen ◽  
A. M. C. Rapin
Keyword(s):  
E Coli ◽  

1982 ◽  
Vol 152 (1) ◽  
pp. 81-88
Author(s):  
E H Berglin ◽  
M B Edlund ◽  
G K Nyberg ◽  
J Carlsson

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.


Sign in / Sign up

Export Citation Format

Share Document