Potentiation by L-cysteine of the bactericidal effect of hydrogen peroxide in Escherichia coli

1982 ◽  
Vol 152 (1) ◽  
pp. 81-88
Author(s):  
E H Berglin ◽  
M B Edlund ◽  
G K Nyberg ◽  
J Carlsson

Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.

Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 745-758 ◽  
Author(s):  
Mourad Sabri ◽  
Simon Léveillé ◽  
Charles M. Dozois

An operon encoding a member of the family of ATP-binding cassette (ABC) divalent metal ion transporters, homologous to Salmonella enterica SitABCD, has been identified in the avian pathogenic Escherichia coli (APEC) strain χ7122. The sitABCD genes were located on the virulence plasmid pAPEC-1, and were highly similar at the nucleotide level to the chromosomally encoded sitABCD genes present in Shigella spp. A cloned copy of sitABCD conferred increased growth upon a siderophore-deficient E. coli strain grown in nutrient broth supplemented with the chelator 2,2′-dipyridyl. Ion rescue demonstrated that Sit-mediated growth promotion of this strain was due to the transport of iron. SitABCD mediated increased transport of both iron and manganese as demonstrated by uptake of 55Fe, 59Fe or 54Mn in E. coli K-12 strains deficient for the transport of iron (aroB feoB) and manganese (mntH) respectively. Isotope uptake and transport inhibition studies showed that in the iron transport deficient strain, SitABCD demonstrated a greater affinity for iron than for manganese, and SitABCD-mediated transport was higher for ferrous iron, whereas in the manganese transport deficient strain, SitABCD demonstrated greater affinity for manganese than for iron. Introduction of the APEC sitABCD genes into an E. coli K-12 mntH mutant also conferred increased resistance to the bactericidal effects of hydrogen peroxide. APEC strain χ7122 derivatives lacking either a functional SitABCD or a functional MntH transport system were as resistant to hydrogen peroxide as the wild-type strain, whereas a Δsit ΔmntH double mutant was more sensitive to hydrogen peroxide. Overall, the results demonstrate that in E. coli SitABCD represents a manganese and iron transporter that, in combination with other ion transport systems, may contribute to acquisition of iron and manganese, and resistance to oxidative stress.


Author(s):  
Bing Han ◽  
Xiaoyu Han ◽  
Mengmeng Ren ◽  
Yilin You ◽  
Jicheng Zhan ◽  
...  

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environment-friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H 2 O 2 -Ag + ) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900 and Salmonella typhimurium SL 1344. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against S. aureus were found to be 0.014 % H 2 O 2 -3.125 mg/L Ag + , while 0.028 % H 2 O 2 -6.25 mg/L Ag + for both E. coli and S. typhimurium . Results of the growth curve assay and time-kill trial suggest that the HSC could inhibit the growth of the tested bacteria, as 99.9 % of viable cells were killed following treatment at the 1 MIC for 3 h. Compared with Oxytech D10 disinfectant (0.25 % H 2 O 2 -5 mg/L Ag + ), the HSC exhibited better antibacterial efficacy at a lower concentration (0.045 % H 2 O 2 -10 mg/L Ag + ). The mechanism of antibacterial action of HSC was found including the disruption of the bacterial cell membrane, followed by entry into the bacteria cell to reduce intracellular adenosine triphosphate (ATP) concentration, and inhibit the activity of antioxidases, superoxide dismutase (SOD) and catalase (CAT). The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.


2007 ◽  
Vol 52 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Sreedhar Subramanian ◽  
Carol L. Roberts ◽  
C. Anthony Hart ◽  
Helen M. Martin ◽  
Steve W. Edwards ◽  
...  

ABSTRACT There is increasing evidence that Escherichia coli organisms are important in Crohn's disease (CD) pathogenesis. In CD tissue they are found within macrophages, and the adherent-invasive CD ileal E. coli isolate LF82 can replicate inside macrophage phagolysosomes. This study investigates replication and antibiotic susceptibility of CD colonic E. coli isolates inside macrophages. Replication of CD colonic E. coli within J774-A1 murine macrophages and human monocyte-derived macrophages (HMDM) was assessed by culture and lysis after gentamicin killing of noninternalized bacteria and verified by electron microscopy (EM). All seven CD colonic isolates tested replicated within J774-A1 macrophages by 3 h (6.36-fold ± 0.7-fold increase; n = 7 isolates) to a similar extent to CD ileal E. coli LF82 (6.8-fold ± 0.8-fold) but significantly more than control patient isolates (5.2-fold ± 0.25-fold; n = 6; P = 0.006) and E. coli K-12 (1.0-fold ± 0.1-fold; P < 0.0001). Replication of CD E. coli HM605 within HMDM (3.9-fold ± 0.7-fold) exceeded that for K-12 (1.4-fold ± 0.2-fold; P = 0.03). EM showed replicating E. coli within macrophage vacuoles. Killing of HM605 within J774-A1 macrophages following a 3-h incubation with antibiotics at published peak serum concentrations (C max) was as follows: for ciprofloxacin, 99.5% ± 0.2%; rifampin, 85.1% ± 6.6%; tetracycline, 62.8% ± 6.1%; clarithromycin, 62.1% ± 5.6% (all P < 0.0001); sulfamethoxazole, 61.3% ± 7.0% (P = 0.0007); trimethoprim, 56.3% ± 3.4% (P < 0.0001); and azithromycin, 41.0% ± 10.5% (P = 0.03). Ampicillin was not effective against intracellular E. coli. Triple antibiotic combinations were assessed at 10% C max, with ciprofloxacin, tetracycline, and trimethoprim causing 97% ± 0.0% killing versus 86% ± 2.0% for ciprofloxacin alone. Colonic mucosa-associated E. coli, particularly CD isolates, replicate within macrophages. Clinical trials are indicated to assess the efficacy of a combination antibiotic therapy targeting intramacrophage E. coli.


1980 ◽  
Vol 29 (2) ◽  
pp. 411-416
Author(s):  
Peter H. Williams ◽  
Philip J. Warner

Evidence is presented that ColV plasmid-mediated iron uptake, an important component of the virulence of invasive strains of Escherichia coli , is independent of colicin V synthesis and activity. A mutant of E. coli K-12 deficient in the biosynthesis of enterochelin (strain AN1937) was unable to grow on minimal agar containing the chelating agent α,α′-dipyridyl unless it was harboring the plasmid ColV-K30 (strain LG1315). Acquisition of the active plasmid-specified iron sequestering system was accompanied by marked enhancement of pathogenicity in experimental infections of mice. Mutants of strain LG1315 were isolated that were defective in iron uptake due to plasmid mutations. They were unchanged with respect to colicin production, but were significantly less virulent than the parent strain. Conversely, mutants isolated as defective in colicin V synthesis were normal for the plasmid-coded iron uptake mechanism and showed the same lethality for infected mice as did strain LG1315. Furthermore, mutations in strain AN1937 which render it resistant or tolerant to the bactericidal action of colicin V did not influence the uptake of iron into plasmid-carrying strains. Cross-feeding tests involving plasmid mutants defective in iron uptake identified two plasmid-specified components of the system, an extracellular iron-chelating compound and a nondiffusible product allowing transport of iron across the bacterial cell membrane.


1977 ◽  
Vol 40 (12) ◽  
pp. 820-823 ◽  
Author(s):  
S. E. GILLILAND ◽  
M. L. SPECK

Lactobacillus acidophilus exerted antagonistic actions on growth of Staphylococcus aureus, Salmonella typhimurium, enteropathogenic Escherichia coli, and Clostridium perfringens when grown with each in associative cultures. S. aureus and C. perfringens were more sensitive to the inhibition than were S. typhimurium and E. coli. The amount of the antagonism produced varied among strains of L. acidophilus and could not be directly related to amounts of acid produced; hydrogen peroxide produced by the lactobacilli appeared to be partially responsible for the antagonistic interaction. The inhibitory effect was produced also under anaerobic conditions in a pre-reduced medium.


2000 ◽  
Vol 182 (20) ◽  
pp. 5864-5871 ◽  
Author(s):  
George P. Munson ◽  
Deborah L. Lam ◽  
F. Wayne Outten ◽  
Thomas V. O'Halloran

ABSTRACT Using a genetic screen we have identified two chromosomal genes,cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pcooperon of E. coli; CopR and CopS from thecop operon, which provides copper resistance toPseudomonas syringae; and SilR and SilS from thesil locus, which provides silver ion resistance toSalmonella enterica serovar Typhimurium. The genescusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC(ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. Thecus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusCand additional downstream genes are homologous to known metal ion antiporters.


1984 ◽  
Vol 30 (12) ◽  
pp. 1467-1476 ◽  
Author(s):  
Bret M. Steiner ◽  
Grace H.W. Wong ◽  
Pramod Sutrave ◽  
Stephen Graves

The effect of hydrogen peroxide on Treponema pallidum was investigated. The in vitro loss of virulence (as measured by rabbit inoculation) of T. pallidum was accelerated by as low as 100 μM hydrogen peroxide in the complex maintenance medium used. Higher doses led to rapidly accelerated death with 500 μM hydrogen peroxide causing sterilization of the medium within 3 to 4 h. Since hydrogen peroxide is known to cause single-stranded breaks in DNA, the effect of hydrogen peroxide on the treponemal genome was examined. Extensive breakage was caused by 100 μM hydrogen peroxide as determined on alkaline sucrose gradients. A limit was reached at 250 μM and above. Single-stranded breaks could be demonstrated as early as 5 – 10 min after exposure to hydrogen peroxide when the treponemes were exposed to 250 μM hydrogen peroxide; accelerated death was evident by 2 h past exposure demonstrating that DNA breakage was preceding death. Treponemal death caused by penicillin did not result in DNA breakage. The repair-proficient bacterium Escherichia coli K-12 was compared with T. pallidum. It required 10 – 100 times more hydrogen peroxide to cause various levels of breakage. Escherichia coli K-12 rapidly repaired DNA breakage once hydrogen peroxide was removed by addition of catalase. Treponema pallidum, in comparison, showed little or no repair in vitro. Addition of catalase or dithiothreitol to the medium protected against all but a low level of breakage; this may reflect on the ability of catalase and reducing agents to protect T. pallidum against oxygen toxicity in vitro.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yue Xing ◽  
Xiaoxi Kang ◽  
Siwei Zhang ◽  
Yujie Men

AbstractTo explore how co-occurring non-antibiotic environmental stressors affect evolutionary trajectories toward antibiotic resistance, we exposed susceptible Escherichia coli K-12 populations to environmentally relevant levels of pesticides and streptomycin for 500 generations. The coexposure substantially changed the phenotypic, genotypic, and fitness evolutionary trajectories, resulting in much stronger streptomycin resistance (>15-fold increase) of the populations. Antibiotic target modification mutations in rpsL and rsmG, which emerged and dominated at late stages of evolution, conferred the strong resistance even with less than 1% abundance, while the off-target mutations in nuoG, nuoL, glnE, and yaiW dominated at early stages only led to mild resistance (2.5–6-fold increase). Moreover, the strongly resistant mutants exhibited lower fitness costs even without the selective pressure and had lower minimal selection concentrations than the mildly resistant ones. Removal of the selective pressure did not reverse the strong resistance of coexposed populations at a later evolutionary stage. The findings suggest higher risks of the selection and propagation of strong antibiotic resistance in environments potentially impacted by antibiotics and pesticides.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


Sign in / Sign up

Export Citation Format

Share Document