The Question of Complicity

Author(s):  
J. S. Weiner ◽  
Chris Stringer

In 1908 (as far as we can ascertain), long before he went to see his ‘old friend’ the Keeper of Geology at South Kensington, some time before he met Teilhard de Chardin, Dawson had in his hands the first piece of the skull of Eoanthropus. This piece, we know, had been chemically treated, by iron sulphate, to produce the brown colour, and in the process the bone had undergone the change in its crystal structure revealed by the X-ray diffraction method. This piece was part of the braincase, the ‘coconut’, smashed by the labourers, according to the story the origins of which are by no means clear. Once again a question faces us which raises sharply and finally the issue of Dawson’s complicity. We might put the question as the ‘Piltdown Riddle’:—Was the pit completely barren at the birth of Piltdown Man or did he begin life there as a burial? Was the cranium genuinely in the gravel or had it been planted where the workmen found it? In the first stages of the investigation, before we fully appreciated the artificiality of the iron-staining, we were inclined to regard the skull-case in the gravel as a genuine though not very ancient fossil. The fluorine values, while not really high, taken with the reduced content of organic matter, certainly gave grounds for accepting a semi-fossilized condition in the cranium. So it was presumed at first that the hoax had been based on a genuine discovery of portions of an ancient skull in the gravel, and that the ape jaw and canine and the other animal remains and implements had been subsequently planted. As the investigations went on, stage by stage, this view became untenable. The iron-staining threw serious doubt on the skull’s derivation from the gravel; the sulphate in the bone, in the form of gypsum, is the result of artificial and deliberate chemical treatment, and gypsum does not occur in the Piltdown or Barcombe Mills gravel. The chemical conditions in the Piltdown subsoil and gravel water are not at all such that this unusual alteration in the bone could have taken place naturally in the gravel.

1988 ◽  
Vol 3 (1) ◽  
pp. 19-22 ◽  
Author(s):  
J. Schlichter ◽  
I. Mayer ◽  
S. Sarig ◽  
N. Garti

AbstractThe effect of solid emulsifiers, added at the level of 10%, on the lattice parameters of tristearin and trilaurin, has been studied by powder X-ray diffraction method. The presence of sorbitan monostearate and glycerol-l-stearate affects slightly the lattice constant a in tristearin; on the other hand, although sorbitan monostearate causes an increase in a of trilaurin, glycerol-l-stearate does not. The presence of sorbitan monolaurate and glycerol-l-laurate affect a of trilaurin similarly to the long chain emulsifiers.A correlation between the effect on a and the increase in melting point has been found.The presence of the emulsifier does not alter drastically the lattice dimensions of the fat. The slight dissimilarity in crystal structure between tristearin and trilaurin is confirmed by the diverse effects of the emulsifiers on the internal structure of the fat.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


1951 ◽  
Vol 22 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Alfred J. Reis ◽  
Jerome J. Slade ◽  
Sigmund Weissmann

2017 ◽  
Vol 74 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Urszula Anna Budniak ◽  
Paulina Maria Dominiak

Isoguanine, an analogue of guanine, is of intrinsic interest as a noncanonical nucleobase. The crystal structure of isoguaninium chloride (systematic name: 6-amino-2-oxo-1H,7H-purin-3-ium chloride), C5H6N5O+·Cl−, has been determined by single-crystal X-ray diffraction. Structure analysis was supported by electrostatic interaction energy (E es) calculations based on charge density reconstructed with the UBDB databank. In the structure, two kinds of molecular tapes are observed, one parallel to (010) and the other parallel to (50\overline{4}). The tapes are formed by dimers of isoguaninium cations interacting with chloride anions. E es analysis indicates that cations in one kind of tape are oriented so as to minimize repulsive electrostatic interactions.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


1979 ◽  
Vol 32 (2) ◽  
pp. 301 ◽  
Author(s):  
V Diakiw ◽  
TW Hambley ◽  
DL Kepert ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound, Ca(C6H2N307)2,5H2O, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.049 for 1513 'observed' reflections. Crystals are orthorhombic, Pmab, a 24.169(6), b l0.292(7), c 8.554(2) �, Z 4. The stereochemistry about the calcium has not been observed previously for the system [M(bidentate)2- (unidentate)4]; in the present structure, the calcium is coordinated by a pair of bidentate picrate ligands and the four water molecules in an array in which three of the water molecules occupy a triangular face of a square antiprism, the overall array having m symmetry. The remaining water molecule occupies a lattice site with no close interaction with the other species.


2008 ◽  
Vol 63 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Henning W. Rohm ◽  
Martin Köckerling

Rb[(Zr6C)Cl15] was prepared by heating ZrCl4, Zr powder, RbCl and Al4C3 at 850 °C for 21 days. The crystal structure was determined by single crystal X-ray diffraction (space group Pmma, a = 18.484(3), b = 18.962(2), c = 9.708(1) Å, V = 2505.4(6) Å3, and Z = 4). Rb[(Zr6C)Cl15] crystallises in the Cs[Nb6Cl15]-type structure. It is built up from two interconnected types of cluster chains, one with linear Zr−Cla−a-Zr bridges, the other one with bent bridges. The rubidium cations are spread over three different sites within the cluster network which differs significantly from the cation distribution in the comparable potassium and caesium phases. The cation distribution can be rationalised considering the size of the cavities and the Coulombic interactions.


2006 ◽  
Vol 71 (9) ◽  
pp. 1278-1302 ◽  
Author(s):  
Martin Valík ◽  
Pavel Matějka ◽  
Eberhardt Herdtweck ◽  
Vladimír Král ◽  
Bohumil Dolensky

A new bis-Tröger's base was prepared from a tetraamine precursor as a mixture of two diastereoisomers. One of the isomers has a chair-like geometry, and the other possesses a boat-like geometry, embodying molecular tweezers. A one-pot preparation of bis-TB isomers and their interconversion under acid conditions was also studied. Structures of both isomers were confirmed by single-crystal X-ray diffraction. Extensive spectroscopic data, including 1H and 13C NMR, IR and Raman spectra of the isomers, are given.


Sign in / Sign up

Export Citation Format

Share Document