Marine Invertebrate Larvae: Model Life Histories for Development, Ecology, and Evolution

We provide a conceptual framework for studies of the developmental and evolutionary ecology of marine invertebrate larvae and illustrate how contributions to this volume demonstrate both past achievements and the future fecundity of this research program. Our conceptual framework is anchored in the idea of model life histories, which is a category of investigation similar to but distinct from model organisms or model clades. Marine invertebrate larvae constitute a coherent, structured research program as model life histories that represent developmental, ecological, and evolutionary processes in different ways. They facilitate interdisciplinary investigation that integrates different approaches to diverse research questions about developmental mechanisms, evolutionary history, and adaptation, as well as providing a window on alterations of the marine environment due to anthropogenic climate change. Success in studies of model life histories provides a strong case for sustained professional, institutional, and financial support to carry these endeavors forward.

Crustaceans are increasingly being used as model organisms in all fields of biology, including neurobiology, developmental biology, animal physiology, evolutionary ecology, biogeography, and resource management. Crustaceans have a very wide range of phenotypes and inhabit a diverse array of environments, ranging from the deep sea to high mountain lakes and even deserts. The evolution of their life histories has permitted crustaceans to successfully colonize this variety of habitats. Few other taxa exhibit such a variety of life histories and behavior. A comprehensive overview of their life histories is essential to the understanding of many aspects of their success in marine and terrestrial environments. This book provides a general overview of crustacean life histories. Crustaceans have particular life history adaptations that have permitted them to conquer all environments on earth. Crustacean life cycles have evolved to maximize fecundity, growth, and ageing, in a wide range of environmental conditions. Individual contributions contrast benefits and costs of different life histories including sexual versus asexual production, semelparity versus iteroparity, and planktonic larvae versus direct development. Important aspects of particular behaviors are presented (e.g. migrations, defense and territorial behaviors, anti-predator behavior, symbiosis).


2020 ◽  
Vol 643 ◽  
pp. 87-97
Author(s):  
K Meyer-Kaiser

Larval dispersal is a critical step in the life-histories of sessile benthic invertebrates. There is a growing body of research showing plasticity in marine invertebrate larvae, but the causes and ranges of intraspecific variation in larvae are not completely understood. In this study, field-based collections of Crepidula fornicata larvae in 2017 motivated a laboratory experiment on carryover effects in 2019. Experimental conditions that approximated environmental conditions experienced by mothers in the field were used to test whether seasonal environmental variations during brooding could lead to differences in larval size and the time to develop to competency. Mothers were kept in 2 different temperature and feeding treatments during brooding, but larvae were cultured in a common garden. Larvae that were brooded at spring temperatures (~13°C) took longer to develop to competency in the common garden and grew larger before becoming competent than larvae brooded at warmer summer temperatures (~21°C). There was no effect of maternal feeding (fed or not fed) on time to develop to competency or larval size. Thus, C. fornicata larvae released earlier in the year are likely to spend longer periods in the water column. They may disperse farther and grow to larger size before settlement. C. fornicata is a model species for larval biology. The results of this study can be used to inform biophysical modelling efforts and refine predictions of connectivity or species range shifts in a changing climate.


For more than a century, evolutionary biologists, ecologists, and oceanographers alike have been intellectually stimulated by marine invertebrate larval forms. In 1995, Ecology of Marine Invertebrate Larvae, edited by the late Dr. Larry McEdward, captured the fundamental phenomenon and tremendous diversity of reproductive, biological, and oceanographic aspects of larval ecology. Now, more than twenty years later, this current edited volume provides an update to many of the original 13 chapters, while also reviewing several braches of larval ecology and evolution that have developed since. In Evolutionary Ecology of Marine Invertebrate Larvae, authors review the origins of marine invertebrate larvae and the developmental mechanisms and ecological factors that may generate this great diversity, and how these microscopic organisms feed, develop, and behave in the pelagic environment. Whether actively swimming in the coastal seas or the deep abyss, larvae are often in motion and must settle on the seafloor; however, if delayed, they are susceptible to a multitude of consequences later in life. Now, in an age of change, larvae face a warmer, more acidic, and more toxic ocean than ever before. Responses to these stressors plus many other facets of larval biology can be broadly profiled, thanks to current technological advances. This edited volume provides a major synthesis of an important interdisciplinary field. It aims to foster stimulating discussions centered on the evolution and ecology of marine invertebrate larvae.


The functional properties of marine invertebrate larvae represent the sum of the physiological activities of the individual, the interdependence among cells making up the whole, and the correct positioning of cells within the larval body. This chapter examines physiological aspects of nutrient acquisition, digestion, assimilation, and distribution within invertebrate larvae from an organismic and comparative perspective. Growth and development of larvae obviously require the acquisition of “food.” Yet the mechanisms where particulate or dissolved organic materials are converted into biomass and promote development of larvae differ and are variably known among groups. Differences in the physiology of the digestive system (secreted enzymes, gut transit time, and assimilation) within and among feeding larvae suggest the possibility of an underappreciated plasticity of digestive physiology. How the ingestion of seawater by and the existence of a circulatory system within larvae contribute to larval growth and development represent important topics for future research.


Author(s):  
Tan Yigitcanlar ◽  
Juan M. Corchado ◽  
Rashid Mehmood ◽  
Rita Yi Man Li ◽  
Karen Mossberger ◽  
...  

The urbanization problems we face may be alleviated using innovative digital technology. However, employing these technologies entails the risk of creating new urban problems and/or intensifying the old ones instead of alleviating them. Hence, in a world with immense technological opportunities and at the same time enormous urbanization challenges, it is critical to adopt the principles of responsible urban innovation. These principles assure the delivery of the desired urban outcomes and futures. We contribute to the existing responsible urban innovation discourse by focusing on local government artificial intelligence (AI) systems, providing a literature and practice overview, and a conceptual framework. In this perspective paper, we advocate for the need for balancing the costs, benefits, risks and impacts of developing, adopting, deploying and managing local government AI systems in order to achieve responsible urban innovation. The statements made in this perspective paper are based on a thorough review of the literature, research, developments, trends and applications carefully selected and analyzed by an expert team of investigators. This study provides new insights, develops a conceptual framework and identifies prospective research questions by placing local government AI systems under the microscope through the lens of responsible urban innovation. The presented overview and framework, along with the identified issues and research agenda, offer scholars prospective lines of research and development; where the outcomes of these future studies will help urban policymakers, managers and planners to better understand the crucial role played by local government AI systems in ensuring the achievement of responsible outcomes.


2021 ◽  
pp. 053901842199956
Author(s):  
Gerard Delanty

This essay is a comment on the research program launched by Frank Adloff and Sighard Neckel. My comment is specifically focused on their research agenda as outlined in their trend-setting article, ‘Futures of sustainability as modernization, transformation, and control: A conceptual framework’. The comment is also addressed more generally to the research program of the Humanities Centre for Advanced Studies ‘Futures of Sustainability’. I raise three issues: the first relates to the very idea of the future; the second concerns the notion of social imaginaries and the third question is focused on the idea of social transformation.


Sign in / Sign up

Export Citation Format

Share Document