Introduction

2020 ◽  
pp. 1-4
Author(s):  
Gabriel Gellner ◽  
Kevin S. McCann ◽  
Emily J. Champagne

This book continues the authoritative and established edited series of theoretical ecology books initiated by Robert May which helped pave the way for ecology to become a more robust theoretical science, encouraging the modern biologist to better understand the mathematics behind their theories. This latest instalment in the Theoretical Ecology series builds on the legacy of its predecessors with a completely new set of contributions. Rather than placing emphasis on historical ideas in theoretical ecology, the editors have encouraged each contribution to: i) synthesize historical theoretical ideas within modern frameworks that have emerged in the last ten to twenty years (e.g., bridging population interactions to whole food webs); ii) describe novel theory that has emerged in the last twenty years from historical empirical areas (e.g., macro-ecology); and iii) cover the booming area of theoretical ecological applications (e.g., disease theory and global change theory). The result is a forward-looking synthesis that will help guide the field through a further decade of development and discovery. Early chapters are collectively more about the building blocks for understanding dynamics of interacting species in time and space, including coexistence, consumer-resource and biological lags, stochasticity, and stage structure. Later, chapters are representative of the study of networks, a large growth area. These include matrix theory, mutualistic networks, community structure, body size and system structure, and network ecology. Novel concepts such as trait-based models and meta-population ecology are then presented. Applied theoretical ecology is then covered by chapters on disease ecology, climate change dynamics, and stable states.

This book continues the authoritative and established edited series of theoretical ecology books initiated by Robert May which helped pave the way for ecology to become a more robust theoretical science, encouraging the modern biologist to better understand the mathematics behind their theories. This latest instalment in the Theoretical Ecology series builds on the legacy of its predecessors with a completely new set of contributions. Rather than placing emphasis on the historical ideas in theoretical ecology, the editors have encouraged each contribution to: i) synthesize historical theoretical ideas within modern frameworks that have emerged in the last ten to twenty years (e.g., bridging population interactions to whole food webs); ii) describe novel theory that has emerged in the last twenty years from historical empirical areas (e.g., macro-ecology); and iii) cover the booming area of theoretical ecological applications (e.g., disease theory and global change theory). The result is a forward-looking synthesis that will help guide the field through a further decade of development and discovery.


2021 ◽  
pp. 1-36
Author(s):  
David Yoo ◽  
Nathan Hertlein ◽  
Vincent Chen ◽  
Carson Willey ◽  
Andrew Gillman ◽  
...  

Abstract Architected elastomeric beam networks have great potential for energy absorption, multi-resonant vibration isolation, and multi-bandgap elastic wave control, due to the reconfigurability and programmability of their mechanical buckling instabilities. However, navigating this design space is challenging due to bifurcations between mono- and bistable beam designs, inherent geometric nonlinearities, and the strong dependence of buckling properties on beam geometry. To investigate these challenges, we developed a Bayesian optimization framework to control the equilibrium states of an inclined elastomeric beam, while also tuning the energy to transition between these configurations. Leveraging symmetry to reduce the design space, the beam shape is parameterized using a Fourier series representation. A penalty method is developed to include monostable designs in objective functions with dependencies on bistable features, enabling monostable results to still be incorporated in the Gaussian Process surrogate and contribute to the optimization process. Two objectives are optimized in this study, including the position of the second stable equilibrium configuration and the ratio of output to input energy between the two stable states. A scalarized multi-objective optimization is also carried out to study the trade-off between equilibrium position and the energetics of transition between the stable states. The predicted designs are qualitatively verified through experimental testing. Collectively, the study explores a new parameter space for beam buckling, introduces a penalty method to regularize between mono- and bistable domains and provides a library of beams as building blocks to assemble and analyze in future studies.


Author(s):  
André M. de Roos ◽  
Lennart Persson

This chapter considers how stage structure and ontogenetic niche shifts may affect the coexistence between two consumer species competing for two resources in the absence and presence of predators, and how ontogenetic niche shifts may give rise to alternative stable states. More specifically, the analysis will use techniques developed within the consumer-resource framework of Tilman (1982), including consumption and renewal vectors (Schellekens, de Roos, and Persson 2010). Tilman showed that stable coexistence between consumers feeding on the same two resources is possible if each consumer species feeds proportionally more on the resource that limits its own growth most. Stable coexistence is, however, also affected by the form of resource-dependent growth isoclines, which represent combinations of resource densities that lead to equal population growth of consumers. It is shown that ontogenetic niche shifts per se affect the form of resource-dependent growth isoclines, which in turn may lead to coexistence through niche partitioning. The chapter also discusses how predation may promote the performance of a species undergoing ontogenetic niche shifts even in the case where it is both the inferior competitor and the preferred prey of the predator.


Author(s):  
Matthias Christandl ◽  
Felix Leditzky ◽  
Christian Majenz ◽  
Graeme Smith ◽  
Florian Speelman ◽  
...  

AbstractQuantum teleportation is one of the fundamental building blocks of quantum Shannon theory. While ordinary teleportation is simple and efficient, port-based teleportation (PBT) enables applications such as universal programmable quantum processors, instantaneous non-local quantum computation and attacks on position-based quantum cryptography. In this work, we determine the fundamental limit on the performance of PBT: for arbitrary fixed input dimension and a large number N of ports, the error of the optimal protocol is proportional to the inverse square of N. We prove this by deriving an achievability bound, obtained by relating the corresponding optimization problem to the lowest Dirichlet eigenvalue of the Laplacian on the ordered simplex. We also give an improved converse bound of matching order in the number of ports. In addition, we determine the leading-order asymptotics of PBT variants defined in terms of maximally entangled resource states. The proofs of these results rely on connecting recently-derived representation-theoretic formulas to random matrix theory. Along the way, we refine a convergence result for the fluctuations of the Schur–Weyl distribution by Johansson, which might be of independent interest.


2021 ◽  
Author(s):  
Jiayue Tao ◽  
Suyi Li

Abstract Multi-stable structures have gathered extensive interest because they can provide a broad spectrum of adaptive functions for many engineering systems. Especially, origami sheets with a translational periodicity can be stacked and assembled to form a multi-stable cellular solid, which has emerged as a promising platform to design functional structures. This paper investigates the multi-stability characteristics of a non-rigid stacked Miura-origami mechanism consisting of Miura-ori sheets and accordion-shaped connecting sheets, focusing on the elemental unit cell. A nonlinear mechanical model based on the barhinge approach is established to quantitatively study the unit cell’s multi-stability with intentionally relaxed rigid-folding conditions. Results show that only two stable states are achievable in the unit cell with enforced rigid-folding kinematics. However, if one relaxes the rigid-folding conditions and allows the facet to deform (i.e. non-rigid folding), four stable states are reachable in the unit cell if the crease torsional stiffness of the connecting sheets becomes sufficiently larger than that of the Miura-ori sheets, or the stress-free folding angle deviates away from 0°. A close examination of the potential energy composition of the non-rigid unit cell provides a detailed principle underpinning the multi-stability. By showing the benefits of exploiting facet compliance, this study can become the building blocks for origami-based structures and material systems with a wider variety of novel functionalities.


2021 ◽  
Vol 5 ◽  
Author(s):  
Diego Griffon ◽  
Maria-Josefina Hernandez ◽  
David Ramírez

The multiple ecological crisis that we are facing forces us to ponder the transition toward sustainable agricultural systems. Two key uncertainties need to be unveiled in addressing this problem; first, we need to identify the general features of alternative models that make them sustainable, and second, we need to explore how to build them from the (flawed) existing systems. In this work we explore these two questions using an ethnoecological and theoretical approach. In the exploration of alternative models, we evaluate an ancestral farming system, the conuco, characterized by, (i) the use of the ecological succession to constantly renew its properties, (ii) the increase of its biodiversity over time (in the horizontal and vertical components), and (iii) the self-regulation of the associated populations. Next, we characterize the topology of ecological networks of agroecosystems along the transition from a monoculture to a conuco-like agroecological system. We use topologies obtained from field information of conventional and agroecological systems as starting and arrival points. To model the dynamics of the systems and numerically simulate the transitions, we use a model based on Generalized Lotka-Volterra equations, where all types of population interactions are represented, with outcomes based on a density-dependent conditionality. The results highlight the relevance of increasing the connectance and diminishing the degree centrality of the conventional systems networks to promote their sustainability. Finally, we propose that the transitions between the monoculture and the agroecological systems could be figuratively interpreted as a cusp catastrophe, where the two systems are understood as alternative stable states and the path from one to the other cannot be reverted by just reversing the values of the control parameter. That is, once a system is in either of these states there is a tendency to stay and a resistance to move away from it. This implies that in the process of transition from a monoculture to a multi-diverse system, it is prudent not to despair if there are no immediate improvements in the performance of the system because once a certain point is reached, the system may experience an abrupt improvement.


Author(s):  
Joshua Kaufmann ◽  
Suyi Li

Abstract Via analytical modeling and experimental validation, this study examines the bending stiffness adaptation of bistable origami modules based on generalized Kresling pattern. These modules, which are the building blocks of an octopus-inspired robotic manipulator, can create a reconfigurable articulation via switching between their stable states. In this way, the manipulator can exhibit pseudo-linkage kinematics with lower control requirements and improved motion accuracy compared to completely soft manipulators. A key to achieving this reconfigurable articulation is that the underlying Kresling modules must show a sufficient difference in bending stiffness between their stable states. Therefore, this study aims to use both a nonlinear bar-hinge model and experimental testing to uncover the correlation between the module bending stiffness and the corresponding origami designs. The results show that the Kresling origami module can indeed exhibit a significant change in bending stiffness because of the reorientation of its triangular facets. That is, at one stable state, these facets align close to parallel to the longitudinal axis of the cylindrical-shaped module, so the module bending stiffness is relatively high and dominated by the facet stretching. However, at the other stable states, the triangular facets are orientated close to perpendicular to the longitudinal axis, so the bending stiffness is low and dominated by crease folding. The results of this study will provide the necessary design insights for constructing a fully functional manipulator with the desired articulation behavior.


Author(s):  
Mingcheng E ◽  
Jianzhong Cha ◽  
Ming Dong

Abstract Through analyzing the function requirements of the Business Process Related Services of the Integrated Infrastructure, this paper has studied the implementation strategy of BPRS by means of Object-Oriented method, matrix theory and Petri Net(PN) technology. Moreover, it has provided a system structure of BPRS based on Intelligence Engineering theory.


2015 ◽  
Vol 63 (3) ◽  
pp. 667-678 ◽  
Author(s):  
M. Janiak ◽  
C. Zieliński

Abstract This paper presets the specification and implementation of the control system of the mobile platform Rex. The presented system structure and the description of its functioning result from the application of a formal method of designing such systems. This formalism is based on the concept of an embodied agent. The behaviours of its subsystems are specified in terms of transition functions that compute, out of the variables contained in the internal memory and the input buffers, the values that are inserted into the output buffers and the internal memory. The transition functions are the parameters of elementary actions, which in turn are used in behaviour patterns which are the building blocks of the subsystems of the designed control system. Rex is a skid steering platform, with four independently actuated wheels. It is represented by a single agent that implements the locomotion functionality. The agent consists of a control subsystem, a virtual effector and a virtual receptor. Each of those subsystems is discussed in details. Both the data structures and the transition functions defining their behaviours are described. The locomotion agent is a part of the control system of the autonomous exploration and rescue robot developed within the RobREx project.


Author(s):  
Kevin S. McCann

This chapter examines the influence of biological lags on consumer–resource dynamics, with particular emphasis on how consumer–resource cycles, or the lack thereof, interact with population level dynamical phenomena. It first considers discrete consumer–resource interactions before discussing the dynamics of stage-structured consumer–resource interactions. It then explains how stage structure promotes the possibility of alternative stable states and changes consumer–resource interaction strength. It also shows how a change in population structure affects food web interactions and/or the strengths of food webs. Finally, it reviews empirical results that show how stage structure and food web interaction influence ecological stability. The chapter argues that weak and inherently stable consumer–resource interactions can mute a potentially unstable population level phenomenon, and that a dynamically decoupled stable stage class can strongly stabilize other stages and the consumer–resource interaction.


Sign in / Sign up

Export Citation Format

Share Document