Primordial Climate

Author(s):  
Jan Zalasiewicz ◽  
Mark Williams

We are lucky, on Earth. We are lucky because we—as complex and self-aware organisms—are here. We are sustained, given air to breathe, and water, and food, by a very ancient planet: a planet past its midpoint, a planet that is nearer death than birth. Our species is a latecomer. It took some three billion years to bridge the gap from a single-celled organism (originating in this planet’s youth) to a multicellular one, and then a little over half a billion more to arrive at the diversity of species on Earth today, including Homo sapiens . In all this time, the chain of life has remained unbroken. The Earth has been consistently habitable, with an atmosphere, and land, and oceans. Since life began, our planet has never been truly deep-frozen, nor have the oceans boiled away. The Earth is the Goldilocks planet. One recalls, here, the children’s story, where the young heroine of that name walks into the house of the three bears, and in their absence tries out successively their bowls of porridge, their chairs, and their beds. Each time the first and second choices are too hot or cold, large or small, hard or soft—and the third choice is just right . The Earth has been, so far and all in all, just right for life: not just right at any one time, but continuously so for three billion years. There have, though, been some close calls: times of mass extinction. But, life has always clung on to bloom once more. That makes the Earth’s history more remarkable than any children’s story. Other planets have not been so lucky. Mars seems to have been a planet with an appreciable atmosphere, and—at least intermittently—running water over its surface, and may even have begun to incubate life. But the atmosphere was stripped away by the solar wind. Its early lakes and rivers became acid, charged with sulphates. Then, most of the water evaporated and was carried off into space; what little was left became locked away as permafrost and in thin ice-caps. Mars does have weather, including spectacular, planet-wide dust-storms.

2020 ◽  
Vol 2 (1) ◽  
pp. 68-77
Author(s):  
Aadil Gulzar ◽  
Tajamul Islam ◽  
Ruquia Gulzar ◽  
Tabasum Hassan

The causes of climate patchy rope in heat up temperature, change in precipitation, degree of utmost conditions occasions like melting of glaciers, polar ice-caps, mount in sea levels, etc. These impacts eventually fall our income by touching the rations we eat, the water we drink, the air we breathe and the earth somewhere we live. Frequent impacts caused fitting to excessive exposure of heat waves such as round stroke, dehydration, cardiovascular, respiratory and neural comborbidities. Climate conversion alters the ecology of vectors and these vectors are capable of have in stock causal agents such as viruses, bacteria and protozoa from animals to humans. Malaria, tick-borne encephalitis, fair fever, plague, and dengue obtain lengthened their geographical ranges as their carriers migrated to privileged latitudes. Droughts canister take part in adverse property on being health, as they over and over again suggest itself in mishmash with other sit out conditions, such as warm waves, wildfires and dust storms. Reduced water quantity may cause decreased water flow during periods of drought, encouraging the development of pathogens which prefer dry, stagnant environments. Altering climatic situation know how to be attributed to mounting international temperatures, spread in the dimensions of ambient fill up fumes and changes in the announce motion as mutual together. Extreme season and climate-related actions are famous to set off fundamental infrastructure failures, lucrative harm and relocation of communities, ensuing in a quantity of health problems.


2013 ◽  
pp. 116-123
Author(s):  
Claire Bompaire-Evesque

This article is a inquiry about how Barrès (1862-1923) handles the religious rite of pilgrimage. Barrès stages in his writings three successive forms of pilgrimage, revealing what is sacred to him at different times. The pilgrimage to a museum or to the birthplace of an artist is typical for the egotism and the humanism of the young Barrès, expressed in the Cult of the Self (1888-1891). After his conversion to nationalism, Barrès tries to unite the sons of France and to instill in them a solemn reverence for “the earth and the dead” ; for that purpose he encourages in French Amities (1903) pilgrimages to historical places of national importance (battlefields; birthplace of Joan of Arc), building what Nora later called the Realms of Memory. The third stage of Barrès’ intellectual evolution is exemplified by The Sacred Hill (1913). In this book the writer celebrates the places where “the Spirit blows”, and proves open to a large scale of spiritual forces, reaching back to paganism and forward to integrative syncretism, which aims at unifying “the entire realm of the sacred”.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


1949 ◽  
Vol 63 (4) ◽  
pp. 369-376
Author(s):  
G. W. Tyrrell

In 1899 Sir Archibald Geikie edited and published the third volume of Hutton's Theory of the Earth. The two earlier volumes had been published as far back as 1795. In his preface Sir A. Geikie gives the history of the MS. from which the present volume was printed; and he provides at the end of the work not only an index of Vol. III, but also, and separately, a most valuable index of the two earlier volumes, in which we note three references to Arran. In Vol. Ill, however, the last and longest chapter is devoted to “An Examination of the Mineral History of the Island of Arran” (pp. 191–267).


2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2016 ◽  
Vol 34 (2-3) ◽  
pp. 211-231 ◽  
Author(s):  
Nigel Clark

Modern western political thought revolves around globality, focusing on the partitioning and the connecting up of the earth’s surface. But climate change and the Anthropocene thesis raise pressing questions about human interchange with the geological and temporal depths of the earth. Drawing on contemporary earth science and the geophilosophy of Deleuze and Guattari, this article explores how geological strata are emerging as provocations for political issue formation. The first section reviews the emergence – and eventual turn away from – concern with ‘revolutions of the earth’ during the 18th- and 19th-century discovery of ‘geohistory’. The second section looks at the subterranean world both as an object of ‘downward’ looking territorial imperatives and as the ultimate power source of all socio-political life. The third section weighs up the prospects of ‘earth system governance’. The paper concludes with some general thoughts about the possibilities of ‘negotiating strata’ in more generative and judicious ways.


Satellite images occupy a signifi cant place in the Earth Sciences. This fully applies to geography. Images of the Earth from space are used in various activities: to assess crops, to establish the boundaries of a phenomenon, to determine the degree of contamination of land or ocean surfaces, to search for minerals, and so on. But in school geography, satellite images are used very rarely - for example, to prove the sphericity of the Earth or to show the view of each continent from space. The purpose of this article is to highlight the methods of using satellite images in geography lessons at school and to create tasks based on these means of training. Main material. The history of using satellite images in school geography has been considered in the article. Advantages and disadvantages of satellite images as training tools are also noted. The role of satellite images in the formation of geographical representations is highlighted by the authors. These images realistically depict many natural phenomena (atmospheric fronts, cyclones, dust storms, etc.). Therefore, as a means of visualization, they contribute to the formation of memory representations in schoolchildren. Examples of a number of satellite images show how they can be used in teaching geography. The article off ers a methodical way of the use of satellite images at diff erent stages of learning. These images can be used to explain the training material, repeat it, control knowledge, and so on. Satellite images can be used to solve cartographic tasks. As practice has shown, we can perform creative tasks based on images. Conclusions. Satellite images play an important role in the system of teaching geography. The use of satellite images allows us to improve the pupils’ interest in the subject. Satellite images form geographical memory representations create a visual image of the natural appearance of the Earth. The study of educational opportunities of the Earth’s images from space has revealed three groups of requirements: pedagogical, technical and specific, determined by the content of school geography. The teacher should select satellite images based on the content of educational tasks of school geography.


2003 ◽  
Vol 21 (9) ◽  
pp. 1931-1938 ◽  
Author(s):  
B. V. Kozelov ◽  
T. V. Kozelova

Abstract. We propose a cellular automata model (CAM) to describe the substorm activity of the magnetospheric-ionospheric system. The state of each cell in the model is described by two numbers that correspond to the energy content in a region of the current sheet in the magnetospheric tail and to the conductivity of the ionospheric domain that is magnetically connected with this region. The driving force of the system is supposed to be provided by the solar wind that is convected along the two boundaries of the system. The energy flux inside is ensured by the penetration of the energy from the solar wind into the array of cells (magnetospheric tail) with a finite velocity. The third boundary (near to the Earth) is closed and the fourth boundary is opened, thereby modeling the flux far away from the tail. The energy dissipation in the system is quite similar to other CAM models, when the energy in a particular cell exceeds some pre-defined threshold, and the part of the energy excess is redistributed between the neighbouring cells. The second number attributed to each cell mimics ionospheric conductivity that can allow for a part of the energy to be shed on field-aligned currents. The feedback between "ionosphere" and "magnetospheric tail" is provided by the change in a part of the energy, which is redistributed in the tail when the threshold is surpassed. The control parameter of the model is the z-component of the interplanetary magnetic field (Bz IMF), "frozen" into the solar wind. To study the internal dynamics of the system at the beginning, this control parameter is taken to be constant. The dynamics of the system undergoes several bifurcations, when the constant varies from - 0.6 to - 6.0. The Bz IMF input results in the periodic transients (activation regions) and the inter-transient period decreases with the decrease of Bz. At the same time the onset of activations in the array shifts towards the "Earth". When the modulus of the Bz IMF exceeds some threshold value, the transition takes place from periodic to chaotic dynamics. In the second part of the work we have chosen as the source the real values of the z-component of the interplanetary magnetic field taken from satellite observations. We have shown that in this case the statistical properties of the transients reproduce the characteristic features observed by Lui et al. (2000).Key words. Magnetospheric physics (magnetosphere-ionosphere interactions) – Space plasma physics (nonlinear phenomena)


Author(s):  
Michael H. Carr

River channels and valleys have been observed on several planetary bodies in addition to the Earth. Long sinuous valleys on Venus, our Moon and Jupiter's moon Io are clearly formed by lava, and branching valleys on Saturn's moon Titan may be forming today by rivers of methane. But by far the most dissected body in our Solar System apart from the Earth is Mars. Branching valleys that in plan resemble terrestrial river valleys are common throughout the most ancient landscapes preserved on the planet. Accompanying the valleys are the remains of other indicators of erosion and deposition, such as deltas, alluvial fans and lake beds. There is little reason to doubt that water was the erosive agent and that early in Mars' history, climatic conditions were very different from the present cold conditions and such that, at least episodically, water could flow across the surface. In addition to the branching valley networks, there are large flood features, termed outflow channels. These are similar to, but dwarf, the largest terrestrial flood channels. The consensus is that these channels were also cut by water although there are other possibilities. The outflow channels mostly postdate the valley networks, although most are still very ancient. They appear to have formed at a time when surface conditions were similar to those that prevail today. There is evidence that glacial activity has modified some of the water-worn valleys, particularly in the 30–50° latitude belts, and ice may also be implicated in the formation of geologically recent, seemingly water-worn gullies on steep slopes. Mars also has had a long volcanic history, and long, sinuous lava channels similar to those on the Moon and Venus are common on and around the large volcanoes. These will not, however, be discussed further; the emphasis here is on the effects of running water on the evolution of the surface.


Sign in / Sign up

Export Citation Format

Share Document