The Oxford Handbook of Invertebrate Neurobiology

Invertebrates have proven to be extremely useful models for gaining insights into the neural and molecular mechanisms of sensory processing, motor control, and higher functions, such as feeding behavior, learning and memory, navigation, and social behavior. Their enormous contribution to neuroscience is due, in part, to the relative simplicity of invertebrate nervous systems and, in part, to the large cells found in some invertebrates, like mollusks. Because of the organizms’ cell size, individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate systems such as Drosophila and Caenorhabditis elegans are ideal models for genetic approaches to the exploration of neuronal function and the neuronal bases of behavior. The Oxford Handbook of Invertebrate Neurobiology reviews neurobiological phenomena, including motor pattern generation, mechanisms of synaptic transmission, and learning and memory, as well as circadian rhythms, development, regeneration, and reproduction. Species-specific behaviors are covered in chapters on the control of swimming in annelids, crustacea, and mollusks; locomotion in hexapods; and camouflage in cephalopods. A unique feature of the handbook is the coverage of social behavior and intentionality in invertebrates. These developments are contextualized in a chapter summarizing past contributions of invertebrate research as well as areas for future studies that will continue to advance the field.

2015 ◽  
Vol 145 (3-4) ◽  
pp. 302-314 ◽  
Author(s):  
Elizabeth C. Leininger ◽  
Darcy B. Kelley

The extant species of African clawed frogs (Xenopus and Silurana) provide an opportunity to link the evolution of vocal characters to changes in the responsible cellular and molecular mechanisms. In this review, we integrate several robust lines of research: evolutionary trajectories of Xenopus vocalizations, cellular and circuit-level mechanisms of vocalization in selected Xenopus model species, and Xenopus evolutionary history and speciation mechanisms. Integrating recent findings allows us to generate and test specific hypotheses about the evolution of Xenopus vocal circuits. We propose that reduced vocal sex differences in some Xenopus species result from species-specific losses of sexually differentiated neural and neuromuscular features. Modification of sex-hormone-regulated developmental mechanisms is a strong candidate mechanism for reduced vocal sex differences.


2018 ◽  
Vol 120 (2) ◽  
pp. 624-632 ◽  
Author(s):  
Julien Grimaud ◽  
Venkatesh N. Murthy

Accurately measuring respiration in laboratory rodents is essential for many fields of research, including olfactory neuroscience, social behavior, learning and memory, and respiratory physiology. However, choosing the right technique to monitor respiration can be tricky, given the many criteria to take into account: reliability, precision, and invasiveness, to name a few. This review aims to assist experimenters in choosing the technique that will best fit their needs, by surveying the available tools, discussing their strengths and weaknesses, and offering suggestions for future improvements.


2001 ◽  
Vol 280 (6) ◽  
pp. G1055-G1060 ◽  
Author(s):  
Pamela J. Hornby

In the last decade, there has been a dramatic increase in academic and pharmaceutical interest in central integration of vago-vagal reflexes controlling the gastrointestinal tract. Associated with this, there have been substantial efforts to determine the receptor-mediated events in the dorsal vagal complex that underlie the physiological responses to distension or variations in the composition of the gut contents. Strong evidence supports the idea that glutamate is a transmitter in afferent vagal fibers conveying information from the gut to the brain, and the implications of this are discussed in this themes article. Furthermore, both ionotropic and metabotropic glutamate receptors mediate pre- and postsynaptic control of glutamate transmission related to several reflexes, including swallowing motor pattern generation, gastric accommodation, and emesis. The emphasis of this themes article is on the potential therapeutic benefits afforded by modulation of these receptors at the site of the dorsal vagal complex.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gil-Yong Lee ◽  
Chan Lee ◽  
Gyu Hwan Park ◽  
Jung-Hee Jang

Increasing evidence suggests that neurodegenerative disorders such as Alzheimer’s disease (AD) are mediated via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, attention has been focused on searching for antioxidant phytochemicals for the prevention and/or treatment of AD through their ability to fortify cholinergic function and antioxidant defense capacity. In this study, we have investigated the neuroprotective effect ofα-pinene (APN) against learning and memory impairment induced by scopolamine (SCO, 1 mg/kg, i.p.), a muscarinic receptor antagonist in C57BL/6 mice. Administration of APN (10 mg/kg, i.p.) significantly improved SCO-induced cognitive dysfunction as assessed by Y-maze and passive avoidance tests. In Morris water-maze test, APN effectively shortened the mean escape latency to find the hidden platform during training days. To further elucidate the molecular mechanisms underlying the neuroprotective effect of APN, the expression of proteins involved in the acetylcholine metabolism and antioxidant system was examined. Particularly, APN treatment increased mRNA expression of choline acetyltransferase in the cortex and protein levels of antioxidant enzymes such as heme oxygenase-1 and manganese superoxide dismutase in the hippocampus via activation of NF-E2-related factor 2. These findings suggest the possible neuroprotective potentials of APN for the management of dementia with learning and memory loss.


1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
GongXin Yu

Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I reportExonVar, a novel computational pipeline forExon-based human-chimpanzee comparativeVariant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons withExonVaridentified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Stefan Bauersachs ◽  
Susanne E Ulbrich ◽  
Karin Gross ◽  
Susanne E M Schmidt ◽  
Heinrich H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.


Sign in / Sign up

Export Citation Format

Share Document