scholarly journals Evolution of Courtship Songs in Xenopus: Vocal Pattern Generation and Sound Production

2015 ◽  
Vol 145 (3-4) ◽  
pp. 302-314 ◽  
Author(s):  
Elizabeth C. Leininger ◽  
Darcy B. Kelley

The extant species of African clawed frogs (Xenopus and Silurana) provide an opportunity to link the evolution of vocal characters to changes in the responsible cellular and molecular mechanisms. In this review, we integrate several robust lines of research: evolutionary trajectories of Xenopus vocalizations, cellular and circuit-level mechanisms of vocalization in selected Xenopus model species, and Xenopus evolutionary history and speciation mechanisms. Integrating recent findings allows us to generate and test specific hypotheses about the evolution of Xenopus vocal circuits. We propose that reduced vocal sex differences in some Xenopus species result from species-specific losses of sexually differentiated neural and neuromuscular features. Modification of sex-hormone-regulated developmental mechanisms is a strong candidate mechanism for reduced vocal sex differences.

2020 ◽  
Author(s):  
Tomohisa Shimasaki ◽  
Sachiko Masuda ◽  
Ruben Garrido-Oter ◽  
Takashi Kawasaki ◽  
Yuichi Aoki ◽  
...  

AbstractPlant specialized metabolites (PSMs) influence the taxonomic compositions of the root-associated microbiota; however, the underlying molecular mechanisms and evolutionary trajectories remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant in the tobacco endosphere, and that its enrichment is mediated by a combination of two tobacco-specific PSMs, santhopine and nicotine The isolation and whole genome sequencing of a representative set of Arthrobacter strains identified independent genomic features, including but not limited to genes for santhopine and nicotine catabolism, which are associated with the colonization competence of tobacco roots. Taken together, these data suggest that plant species-specific root microbiota assembly is mediated by bacterial catabolism of a cocktail of PSMs synthesized by the host plant.


2021 ◽  
Author(s):  
Meng-Ching Ko ◽  
Carolina Frankl-Vilches ◽  
Antje Bakker ◽  
Manfred Gahr

AbstractSinging occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and nonbreeding seasons, nonbreeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from nonsinging to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Ching Ko ◽  
Carolina Frankl-Vilches ◽  
Antje Bakker ◽  
Manfred Gahr

Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.


Invertebrates have proven to be extremely useful models for gaining insights into the neural and molecular mechanisms of sensory processing, motor control, and higher functions, such as feeding behavior, learning and memory, navigation, and social behavior. Their enormous contribution to neuroscience is due, in part, to the relative simplicity of invertebrate nervous systems and, in part, to the large cells found in some invertebrates, like mollusks. Because of the organizms’ cell size, individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate systems such as Drosophila and Caenorhabditis elegans are ideal models for genetic approaches to the exploration of neuronal function and the neuronal bases of behavior. The Oxford Handbook of Invertebrate Neurobiology reviews neurobiological phenomena, including motor pattern generation, mechanisms of synaptic transmission, and learning and memory, as well as circadian rhythms, development, regeneration, and reproduction. Species-specific behaviors are covered in chapters on the control of swimming in annelids, crustacea, and mollusks; locomotion in hexapods; and camouflage in cephalopods. A unique feature of the handbook is the coverage of social behavior and intentionality in invertebrates. These developments are contextualized in a chapter summarizing past contributions of invertebrate research as well as areas for future studies that will continue to advance the field.


Acta Naturae ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 4-15 ◽  
Author(s):  
A. A. Lobov ◽  
A. L. Maltseva ◽  
N. A. Mikhailova ◽  
A. I. Granovitch

Fertilization (gamete fusion followed by zygote formation) is a multistage process. Each stage is mediated by ligand-receptor recognition of gamete interaction molecules. This recognition includes the movement of sperm in the gradient of egg chemoattractants, destruction of the egg envelope by acrosomal proteins, etc. Gametic incompatibility is one of the mechanisms of reproductive isolation. It is based on species-specific molecular interactions that prevent heterospecific fertilization. Although gametic incompatibility may occur in any sexually reproducing organism, it has been studied only in a few model species. Gamete interactions in different taxa involve generally similar processes, but they often employ non-homologous molecules. Gamete recognition proteins evolve rapidly, like immunity proteins, and include many taxon-specific families. In fact, recently appeared proteins particularly contribute to reproductive isolation via gametic incompatibility. Thus, we can assume a multiple, independent origin of this type of reproductive isolation throughout animal evolution. Gametic incompatibility can be achieved at any fertilization stage and entails different consequences at different taxonomic levels and ranges, from complete incompatibility between closely related species to partial incompatibility between distantly related taxa.


2008 ◽  
Vol 5 (1) ◽  
pp. 138-140 ◽  
Author(s):  
Tom V Smulders

Most biomedical neuroscientists realize the importance of the study of brain evolution to help them understand the differences and similarities between their animal model of choice and the human brains in which they are ultimately interested. Many think of evolution as a linear process, going from simpler brains, as those of rats, to more complex ones, as those of humans. However, in reality, every extant species' brain has undergone as long a period of evolution as has the human brain, and each brain has its own species-specific adaptations. By understanding the variety of existing brain types, we can more accurately reconstruct the brains of common ancestors, and understand which brain traits (of humans as well as other species) are derived and which are ancestral. This understanding also allows us to identify convergently evolved traits, which are crucial in formulating hypotheses about structure–function relationships in the brain. A thorough understanding of the processes and patterns of brain evolution is essential to generalizing findings from ‘model species’ to humans, which is the backbone of modern biomedical science.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weizhao Yang ◽  
Nathalie Feiner ◽  
Catarina Pinho ◽  
Geoffrey M. While ◽  
Antigoni Kaliontzopoulou ◽  
...  

AbstractThe Mediterranean basin is a hotspot of biodiversity, fuelled by climatic oscillation and geological change over the past 20 million years. Wall lizards of the genus Podarcis are among the most abundant, diverse, and conspicuous Mediterranean fauna. Here, we unravel the remarkably entangled evolutionary history of wall lizards by sequencing genomes of 34 major lineages covering 26 species. We demonstrate an early (>11 MYA) separation into two clades centred on the Iberian and Balkan Peninsulas, and two clades of Mediterranean island endemics. Diversification within these clades was pronounced between 6.5–4.0 MYA, a period spanning the Messinian Salinity Crisis, during which the Mediterranean Sea nearly dried up before rapidly refilling. However, genetic exchange between lineages has been a pervasive feature throughout the entire history of wall lizards. This has resulted in a highly reticulated pattern of evolution across the group, characterised by mosaic genomes with major contributions from two or more parental taxa. These hybrid lineages gave rise to several of the extant species that are endemic to Mediterranean islands. The mosaic genomes of island endemics may have promoted their extraordinary adaptability and striking diversity in body size, shape and colouration, which have puzzled biologists for centuries.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. eaba6605 ◽  
Author(s):  
Pierre-Marc Delaux ◽  
Sebastian Schornack

During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today’s continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
GongXin Yu

Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I reportExonVar, a novel computational pipeline forExon-based human-chimpanzee comparativeVariant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons withExonVaridentified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.


Sign in / Sign up

Export Citation Format

Share Document